Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектры актинидов оболочкой

    Спектры испускания атомов редкоземельных элементов характеризуются весьма большой сложностью и очень большим числом спектральных линий. Эта сложность спектров редких земель обусловлена сложностью строения электронной оболочки их атомов. В ряду лантанидов (1 = 58—71), начинающемся после лантана (2 = 57), идет последовательное заполнение внутренней 4/-оболочки. Для спектров редких земель, как и для спектров актинидов, характерно появление наряду с атомными также и ионных линий при возбуждении спектра в дуговом источнике света, что связано с относительно небольшой величиной потенциалов ионизации их атомов ). [c.266]


    Элементы всех остальных побочных групп имеют один или несколько электронов на нижнем -уровне, а лантаниды и актиниды на /-уровне. Все они имеют невысокие потенциалы возбуждения последних линий, которые расположены в ультрафиолетовой области, а у некоторых элементов — в видимой области спектра (Сг, и и W и др.). Строение атомов лантанидов и актинидов отличается от атомов других элементов тем, что частично заполненный уровень (4/ или 5/) относится к глубокой внутренней оболочке. [c.46]

    При изучении спектров поглощения комплексов, центральными ионами которых являются ионы металлов с недостроенными электронными оболочками [группа Ре (от Т1 до Си) — Зс ", группа Р(1 (от 2г до Ag) — 4с(", группа Р1 (от Ш до Ли) — 5й", редкие земли — 4/" и актиниды — теория [c.108]

    Наиболее исследованными элементами являются U(III) (f ) [98], U(IV)(f) [60, 77, 93, 112], U(VI) (/ ) [103], Pu (ITI) (/ ) [182], m(III) (f) [112, 94] и m(IV) (/ ) [112, 94]. Мы не будем рассматривать здесь спектры этих элементов, поскольку не излагали в этой главе необходимые для этого теоретические основы [58, 94], но интересно отметить, что спектры Сш(1И) обладают типичными для оболочек, заполненных наполовину, узкими полосами [как у Gd(III)] [94], и именно это было существенным аргументом в пользу наличия у актинидов конфигураций /-электронов [175]. [c.273]

    Слоистое в энергетическом отношении строение а/гао. ов, обнаруживающееся в структуре рентгеновских спектров, как уже упоминалось, очень важно для правильного понимания природы главных групп периодической системы. Знакомство с этим строением в той мере, в какой оно отражается в тонкой структуре рентгеновских/спектров, обнаруживающей подразделение отдельных электронных оболочек, позволяет понять также и особенности строения побочных подгрупп периодической системы, включая и группы лантанидов и актинидов. [c.259]

    Энергии уровней 5/ и Ы настолько близки, что могут перекрываться, и поэтому наличие 5/-электронов может зависеть даже от валентности элемента и фазового состояния его соединения. Одинаковая структура электронной оболочки объясняет аналогию спектров поглощения актинидов и лантанидов положение и характер полос поглощения, сплощное поглощение в ультрафиолетовой области и т. д. [c.491]

    Спектры поглощения ионов, образуемых актинидами, как и лантанидами, состоят из узких полос в видимой, ближней УФ- и ближней ИК-областях. Эти спектры менее подвержены влиянию поля лигандов, чем спектральные полосы ионов переходных металлов -группы. Полосы, соответствующие электронным переходам в пределах 5/"-оболочки, обычно примерно в 10 раз интенсивнее, чем полосы, соответствующие лантанидам. Спектры, обусловленные только одним /-электроном, просты, так как состоят лишь из одного перехода Для конфигурации / (Ст , ср. с Сё ") [c.535]


    Дчя твердых соединений как лантанидов, так и актинидов наблюдаются спектры поглош,ения и флюоресценции с резкими линиями. Интенсивности этих линий, так же как и резкость, не вызывают сомнений, но большинство их обусловлено переходами между энергетическими уровнями в пределах /-оболочки. У более легких актинидов вероятность перехода электронов обычно в 10—100 раз больше, чем у лантанидов, за исключением f [31], у которого эта вероятность весьма сравнима. [c.120]

    Задача спектрального анализа редкоземельных элементов, как мы уже указывали выше, аналогична задаче анализа актинидов. Эта аналогия не ограничивается подобием спектров, связанным со сходным строением электронных оболочек. По тем же причинам химические свойства соединений редких зе.мель в некоторой степени аналогичны свойствам соответствующих элементов ряда актинидов. Так, напри.мер, малая летучесть окислов, характерная для большинства редкоземельных элементов, свойственна многим членам семейства актинидов. Поэтому не только условия возбуждения спектров, но и условия испарения пробы и поступления вещества в пламя источника оказываются весьма сходными. [c.267]

    На рис. 44 а и 446 приводятся спектры поглощения водных растворов лантанидов и актинидов. Совершенно очевидно сходство спектров тех и других элементов. Характерные спектры поглощения с резкими полосами в видимой области отмечены также для водных растворов четырех- и пятивалентного нептуния и высших валентностей плутония. Лишь для шестивалентного нептуния полосы в спектре поглощения отсутствуют, что опять подтверждает положение нептуния как четвёртого актинида. В самом деле, структура наружных оболочек нептуния (если заполнение 5/-мест начинается с тория) должна иметь вид 5/ 6(178 , а в соединениях шестивалентного нептуния из семи перечисленных электронов наружных оболочек шесть связано, и остаётся лишь один /-электрон. Поэтому, естественно, пропадают полосы, связанные с взаимодействием по меньшей мере двух /-электронов. [c.154]

    Спектрофотометрические методы определения содержания отдельных РЗЭ основаны на использовании спектров поглошения растворов солей РЗЭ — хлоридов, нитратов, перхлоратов. Из всех элементов Периодической системы Д. И. Менделеева только у солей РЗЭ (и солей актинидов) наблюдаются довольно узкие полосы погло-шений с острыми максимумами в инфракрасной, видимой и ультрафиолетовой областях спектра. Узкополосные спектры поглошения аква-ионов лантаноидов объясняются особенностями строения их оболочек, причем спектр поглошения каждого РЗЭ имеет характерный, только ему присущий вид (рис. 22), так как отражает электронные переходы на оболочке 4/. Исключение составляют ионы иттрия, лантана и лютеция, которые не обладают собственным поглошением в растворах их солей. Спектры поглошения РЗЭ используют для определения содержания отдельных РЗЭ с помощью спектрофотометров или фотоэлектроколориметров, снабженных ртутной лампой СВД-120А (ФЭК-56), дающей линейчатый спектр. [c.195]

    Э.с. поглощения в конденсированных средах можно разделить на следующие основные типы. 1) Спектры с интенсивными широкими полосами с коэфф. поглощения в максимуме =2 10 , обычно лежащими в УФ-области и называегйыми полосами электронного переноса. Спектры электронного переноса наблюдаются у растворов и кристаллов и возникают при переносах электронов либо от центрального иона в комплексе к лиганду (от иона примеси к атомам, образующим решетку кристалла), либо в обратном направлении. 2) Спектры с менее интенсивнымп полосами с =i 10—10 возникают при переходах электронов внутри d и / оболочек ионов переходных и редкоземельных элементов и актинидов (см. Периодическая система элементов Менделеева), расщепившихся в поле лигандов пли в поле кристаллич. решетки. 3) Спектры, состоящие из слабых полос с = Ю возникающих при переходах электронов между уровнями атомов или ионов с различной мультинлет-ностью. [c.479]

    Не обсуждая дальнейшие подробности построения актинидного ряда, подчеркиваем, что сложность электронной конфигурации актинидов приводит к большой сложности спектров указанных элементов. Действительно, наличие эквивалентных 5/-электронов, а также малая разница в энергиях для конкурирующих 5/- и бс -оболочек, приводит к весьма большому числу возможных энергетических уровней, а следовательно, и к очень сложному многолинейчатому спектру. Кроме того, следует иметь в виду, что по имеющимся оценкам [ ] потенциал ионизации урана весьма невелик (я=4 эв). Поэтому линии спектра ионизо-ванного урана легко возбуждаются в дуговом источнике, что еще более увеличивает общее число спектральных линий, которые, как правило, лишь частично разрешаются на спектрограмме. К сказанному надо добавить, что при введении в источник света пробы в виде окислов тяжелых элементов всегда наблюдается очень сильный фон, создаваемый излу чением раскаленных частиц тугоплавкой окиси, что существенно снижает чувствительность спектроскопических определений. [c.265]


    Элементы группы урана относятся к 7-му периоду таблицы Менделеева. Как и все другие периоды менделеевской системы, 7-й период начинается с двух элементов (Рг и Ra), имеющих в нормальном состоянии вне замкнутых оболочек соответственно один и два электрона 7з и Третьим в этой строке стоит элемент актиний (Ас, Z = 89), с которого начинается заполнение оболочки 6d нормальным состоянием Ас1 является 6d7s2 2D. Относительно следующих элементов можно было бы предположить, что либо в них продолжается застройка оболочки d, либо начинается застройка f-оболочки, как в шестой строке таблицы Менделеева для группы редких земель. Чрезвычайная сложнссть спектров элементов, стоящих за актинием, и трудность разбора их спектров долгое время затрудняли выбор между этими двумя возможностями. Допускалось, что у Th, Ра и U происходит заполнение 6d-oбoлoчки и что нормальным состоянием UI является состояние 6d4 7s2 5D. Лишь в последние годы в результате многочисленных исследований оптических и других физико-химических свойств этих элементов, а также искусственно получаемых трансурановых элементов (Np, Ри, Ат и т. д.) удалось установить, что здесь происходит заполнение 5 -оболочки. Таким образом, группа элементов, следующих за актинием, аналогична по своим физико-химическим свойствам редким землям. Эту новую группу элементов с достраивающейся f-оболочкой в последнее время обычно называют актинидами. [c.303]

    Актинидов, как и редких земель, должно быть 14, так что их группа должна заканчиваться на элементе с Z=103. Спектры >этих элементов, особенно трансурановых, изучены пока слабо, что не позволяет в большинстве случаев с уверенностью установить их наиболее глубокие электронные конфигурации. Тем не менее можно считать установленным, что, как и в случае редких земель, последовательное заполнение f-оболочки электронами имеет место лишь для трехкратных ионов. У ионов в состояниях ионизации с меньшей кратностью и у нейтральных атомов актинидов встречаются конфигурации 5f, 5f 6d, 5f 2 7s2, 5f 2 6d7s, 5f 3 6d7s2. Торий, как указано ниже, содержит f-электрон лишь в состоянии трехкратной ионизации (Th IV). Вероятные наиболее глубокие электронные конфигурации ионов и нейтральных атомов актинидов приведены в табл. 75. [c.303]


Смотреть страницы где упоминается термин Спектры актинидов оболочкой: [c.324]    [c.87]   
Оптические спектры атомов (1963) -- [ c.288 , c.304 ]




ПОИСК





Смотрите так же термины и статьи:

Актиниды

Оболочка

Спектры актинидов

Спектры актинидов замкнутой оболочкой



© 2025 chem21.info Реклама на сайте