Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Другие элементы второго периода

    Молекулы Oj, Nj и I2, состоящие из атомов только одного сорта, называются гомоядерными. В отличие от этого такие молекулы, как, например, НС1, СО или HI, называются гетероядерными. Попробуем распространить описанный выше простой подход к рассмотрению молекул Н, и H j, основанный на теории молекулярных орбиталей, на гомоядерные двухатомные молекулы элементов второго периода. Некоторые из таких молекул, например Nj, Oj и Fj, устойчивы при нормальных условиях. Другие, например С или Lij, обнаруживаются только при высоких температурах, а третьи вообше не существуют. Как объясняет эти факты теория молекулярных орбиталей  [c.520]


    Гибридизация в молекулах аммиака и воды. Мы вкратце обсудили геометрическое строение соединений бериллия, бора и углерода, пользуясь концепцией гибридизации. При дальнейшем движении по периоду вправо мы переходим к соединениям азота и кислорода, геометрия которых уже обсуждалась в рамках чистых р-орбиталей. Такое рассмотрение нельзя признать целиком удовлетворительным, если помнить, что экспериментальные значения валентных углов в молекулах HgN (107°18 ) и Н О (104°ЗГ) больше, чем между чистыми р-орбиталями (90°). С другой стороны, экспериментальные величины гораздо ближе к 109°28 — тетраэдрическому углу при sp -гибридизации связей. Так возникла идея о существовании общей для всех элементов второго периода гибридизации атомных s- и р-орбиталей. В применении к молекулам HgN и HjO это выглядит так, как показано на рис. III. 15. Октет электронов вокруг каждого центрального атома располагается на четырех sp -гибридных орбиталях, причем в моле- [c.183]

    Данные табл. 6 позволяют связать более тонкие изменения энергий ионизации с характером заполнения электронных оболочек. Для элементов второго периода при переходе от лития к неону наблюдается возрастание энергии ионизации. Это объясняется увеличением заряда ядра при постоянстве числа электронных слоев. В то же время возрастание энергий ионизации первого порядка происходит внутри периода неравномерно. Так, например, у бериллия и азота наблюдается заметное увеличение /1 по сравнению с последующими элементами — бором и кислородом. Аналогичное нарушение монотонности в изменении числовых значений первых ионизационных потенциалов характерно и для других периодов Системы.- Объясняется это тем, что повышенной стабильностью отличаются атомы, у которых внешняя электронная оболочка либо сов- [c.63]

    Проведенный выше обзор валентности элементов второго периода периодической системы позволяет понять причину отличия этих элемеитов от других. Особенно сильно это отличие выражено у трех элементов — азота, кислорода и фтора. Кроме особенностей,. обусловленных малым радиусом атомов и ионов, отличия данных элементов связаны также и с тем, что их внешние электроны находятся во втором слое, в котором имеются только четыре квантовые ячейки. Поэтому данные элементы не могут проявлять высокие валентности, которые известны для их аналогов. [c.83]

    Относительная прочность о- и л-связей зависит от периода в периодической системе, в котором расположены образующие молекулу атомы. Для атомов элементов второго периода прочность о- и л-связей примерно одинакова. Элементы, расположенные ниже второго периода, достаточно прочных (р — р) л-связей не образуют. Это можно объяснить следующим образом. Как видно из схемы образования л-связи, для перекрывания р-орбиталей атомы должны быть расположены достаточно близко Друг к другу. В группе сверху вниз радиусы атомов увеличиваются, причем наибольшее увеличение радиусов, примерно на 7з, наблюдается при переходе от второго к третьему периоду. Такое увеличение радиусов приводит к тому, что атомы не могут приблизиться на достаточно близкое расстояние, необходимое для перекрывания р-орбиталей с образованием л-связи. Поэтому атомы элементов, расположенных ниже второго периода, образуют друг с другом только ст-связи. Отсюда становится понятным, например, тот факт, что не существует устойчивых молекул 82 и Р2, аналогичных О2 и N2, хотя в простых веществах сера и фосфор соответственно двух- и трехвалентны, так же как кислород и азот. Сера и фосфор образуют различные полимерные молекулы, состоящие из большого количества атомов, только с ст-связями. Полимерное строение молекул серы и фосфора является причиной того, что простые вещества, образуемые этими элементами, находятся при обычных условиях в твердом состоянии. Молекулы, в которых азот и фосфор, кислород и сера образуют только а-связи, имеют одинаковое строение, например, ЫНз и РНз, Н2О и Н23. [c.83]


    Другие элементы второго периода [c.74]

    Максимальное число связей атома азота в его соединениях равно четырем, как и для других элементов второго периода. Это реализуется, например, в катионе NH4+, где осуществляется 5рз-гибридизация. [c.529]

    Во внешнем электронном слое азота, как и у атомов других элементов второго периода, нет -подуровня. Поэтому число ковалентных связей, образуемых атомом азота, не может превышать четырех. [c.169]

    При переходе от фтора к йоду закономерно растут атомные и ионные радиусы, падает сродство к электрону и электроотрицательность, растут межъядерные расстояния молекул Г2 и соответственно падает их прочность. Вместе с тем, как будет показано ниже, свойства фтора (как и других элементов второго периода) существенно отличаются от свойств электронных аналогов. [c.416]

    Подобно атомам других элементов второго периода, атом азота имеет только четыре орбитали, пригодные для образования связи, он может образовывать максимально четыре связи. Однако поскольку образование трех двухэлектронных связей завершает октет Х( Р)з и атом азота при этом обладает неподеленной парой электронов, то четыре ковалентные связи люгут образоваться только или а) благодаря координации, как в донорно-акцепторных комплексах (например, РуВ"—+М(СНз) ) и-тн в окисях аминов (например, [c.156]

    Если от углерода перейти к другим элементам второго периода, то в их соединениях мы встречаемся с различными валентными углами, лежащими около 90—100°. Ниже приведено несколько примеров  [c.38]

    Подобно атомам других элементов второго периода, атом азота [c.156]

    Элементы второго периода, в атомах которых заполняется второй электронный слой, сильно отличаются от всех других элементов. Это объясняется тем, что энергия электронов во втором слое значительно ниже энергии электронов в последующих слоях, и тем, что во втором слое не может находиться более 8 электронов. [c.41]

    Другие элементы. Для элементов третьего и последующих периодов возможные ковалентности могут быть выше, чем для элементов второго периода. Это связано с тем, что при главных квантовых числах, отличающихся от 1 и 2, т. е. для внешних электронных оболочек атомов 3-го и последующих периодов, существуют внешние -подоболочки. Например, для атома серы, являющегося [c.124]

    Для того чтобы объяснить эти аномалии, необходимо сделать ряд допущений, некоторые из которых уже были введены и обоснованы ранее. Так, неподеленная пара электронов, которая занимает довольно большую диффузную орбиталь, оказывает большее отталкивающее действие на другие пары электронов, чем связываю щие пары, которые занимают более ограниченные двухцентровые орбитали (рис. 6-3). Валентный уровень атомов элементов второго периода (Т1—Не) заполнен, когда он содержит четыре пары электронов, тогда как валентный уровень атомов элементов третьего н последующих периодов может содержать и более четырех пар электронов. Когда заполненные орбитали соприкасаются, силы Паули возрастают очень быстро, так как они изменяются обратно пропорционально межэлектронному расстоянию в некоторой высокой степени . [c.225]

    В настоящее время установлено, что кратные, или л-связи в комплексах металлов могут получаться, по крайней мере, двумя путями. Во-первых, в результате перенесения с е-электронов, кото рые не могут образовывать а-связи, на пустые рг.-орбитали, локализованные на лигандах, и, во-вторых, перенесением е-электро-нов на пустые йл-орбитали, локализованные на лигандах. Первый тип связи, называемый иногда л — Ря-взаимодействием, имеет место тогда, когда донорным является атом элемента второго периода, например N в N62, С в СО или в СМ". Второй тип связи., названный л— л-взаимодействием, осуществляется в том случае, если донорным атомом будет атом элемента третьего и последующих периодов, например Р, 5 и т. д., которые имеют пустые, пригодные для образования связи -орбитали. Этот так называемый обратный перенос электронов от металла к лиганду обуславливает не только увеличение прочности связи, но и, с другой стороны,, уменьшение чрезмерного отрицательного заряда на атоме металла Третий тип дативных я-связей, включающий рл—рл-перекрыва-ние, существует, как предполагают, в некоторых комплексах бора, но этот случай нужно рассматривать как исключительный. Наконец, было предположено, что в некоторых переходных состояниях комплексов имеет место четвертый тип л-связей, возникающий при переносе л-электронов от лиганда на вакантную -орбиталь металла. Однако этот факт имеет только косвенное подтверждение [c.254]

    Чаще всего в полуэмпирических методах используют валентное приближение, согласно которому в разложении МО в ЛКАО учитывают только электроны и соответствующие им орбитали валентной оболочки внутренние электроны, например Is углерода и других элементов второго и высших периодов, считаются локализованными на соответствующих атомных орбиталях и образуют неполяризованный остов. [c.198]

    Из данных табл. 31 видно, что при последовательном переходе от одного периода к другому растет координационное число элементов. Так, для элементов первого периода его предельное значение равно 2, у элементов второго периода — 4 (одна 5- и три р-орбитали). У атомов элементов третьего периода появляются -орбитали и в связи с этим координационное число может быть равно б (з-, р-, -орбитали). Элементы пятого и шестого периодов могут образовывать комплексные соединения с еще более высоким координационным числом. [c.247]


    В этом, а также в ряде других свойств бериллий сходен с алюминием— сходство элемента второго периода с элементом третьего периода по диагонали (А 2=9). [c.47]

    Двойные и тройные связи важны только для элементов второго периода — углерода, азота, кислорода [7]. Кратные связи у элементов третьего периода встречаются редко, и соединения с такими связями обычно неустойчивы [8], так как необходимые для их образования р-орбитали расположены далеко друг от друга, что затрудняет их перекрывание. Исключение составляют двойные связи С = 8, которые встречаются часто правда, соединения с такими связями, как правило, намного менее устойчивы, чем соответствующие соединения со связями С=0 (см., однако, разд. 2.7). Устойчивые соединения с двойными связями 51 —С и 51 = 51 встречаются редко, хотя некоторые примеры таких соединений известны [9], в том числе цис- и транс-изомеры по связи 81=81 [9а]. [c.24]

    СВЯЗЬ, а какие являются неподеленными. Неподеленные электроны (либо один, либо пара) составляют часть внешней оболочки только одного атома, а электроны, участвующие в образовании ковалентной связи между двумя атомами, являются частью внешней оболочки обоих этих атомов. Атомы элементов второго периода (В, С, Ы, О, Р) могут максимально иметь восемь валентных электронов] обычно так и происходит, хотя известны случаи, когда число валентных электронов у элемента второго периода равно шести или семи. В тех случаях, когда возможно построение структур обоих типов, т. е. с шестью или семью электронами вокруг атома второго периода, с одной стороны, и с октетом электронов — с другой, реализуются последние структуры, так как обычно они имеют более низкую энергию. Например, этилен имеет структуру [c.27]

    Сравнение длин связей, например для муравьиной кислоты, показывает, что ковалентная связь в исходной молекуле мономера испытала деформацию. Ее длина увеличилась от 0,097 в мономере до 0,107 нм в димере. Большее или меньшее удлинение связи Н—X и ее разрыхление наблюдается и в других веществах. С другой стороны, укорочение межатомного расстояния Н. .. V упрочняет водородную связь. Энергия водородной связи невелика и лежит в пределах 8—40 кДж. Энергия этой связи примерно в 10 раз больше энергии ван-дер-ваальсового взаимодействия и на порядок меньше энергии ковалентной связи. Так, энергия водородной связи Н. .. Р равна 42 кДж, Н. .. О 21 кДж, Н. .. N 8 кДж. Водородная связь проявляется тем сильнее, чем больше относительная электроотрицательность и меньше размер атома-партнера. Поэтому она легко возникает с атомами неметаллических элементов второго периода Периодической системы и в меньшей степени характерна для хлора и серы. Несмотря на малую прочность водородной связи, она определяет иногда структуру вещества и существенно влияет на его физические и химические свойства. Благодаря водородным связям молекулы объединяются в димеры и более сложные ассоциаты, устойчивые при достаточно низких температурах. Ассоциаты могут представлять собой одномерные образования [c.138]

    Из спиновой теории валентности вытекает, что образовать ковалентную связь способны только неспаренные электроны. Они и определяют число связей данного атома с другими, а следовательно, и валентность [10, стр. 158]. Рассмотрим валентность элементов второго периода системы элементов, пользуясь табл. 7. [c.90]

    Двухатомные гомоядерные молекулы элементов второго периода. Рассмотренный принцип построения МО из двух АО сохраняется при построении гомоядерных молекул элементов второго периода системы Д. И. Менделеева. Они образуются в результате взаимодействия 25- и 2р -, 2ру- и 2/С72-орбиталей. Участием внутренних электронов Ь-орби-талей можно пренебречь (на последующих энергетических схемах они не учтены). 25-орбиталь одного атома взаимодействует только с 25-орбиталью другого атома (должна быть близость значений энергий взаимодействующих орбиталей), образуя МО и При пере- [c.93]

    Атом лития на 25-подуровне имеет один неспаренный электрон и, следовательно, соединение должно иметь состав LiH. У атома бериллия этот подуровень заполнен и нет ни одного неспаренного электрона, следовательно, бериллий не должен образовывать ни одной химической связи. У бора и следующих за ним элементов (С, N, О, F) происходит последовательное заполнение 2р-подуровня, и атомы этих элементов будут иметь определенное число неспаренных электронов. Если при образовании связей учитывать только наличие неспаренных электронов, то для этих элементов должны образоваться следующие водородные соединения ВН, СН , NH3, Н7О, HF. Отсюда видно, что, применяя только обменный механизм образования химической связи, можно вступить в противоречие с экспериментальными данными бериллий образует соединение с водородом состава ВеНг, водородные соединения бора также имеют другой состав, а простейшее соединение углерода с водородом имеет состав СН4.Устранить это противоречие можно, предположив, что атомы элементов второго периода в образовании молекул участвуют в возбужденном состоянии, т.е. происходит распаривание 5-электронов и переход их на р-подуровень. Но тут возникает другое несоответствие с опытными данными. Поскольку энергии 5- и р-электронов различны, то и энергии образуемых ими химических связей должны отличаться, а, следовательно, подобные связи Э-Н должны иметь разную длину (в зависимости от того, орбитали какого типа принимают участие в их образовании). Согласовать теорию и эксперимент можно, введя предположение об усреднении энергий 5- и р-подуровней и образовании новых уровней, на которых энергии электронов, находящихся уже на орбиталях другого типа, одинаковы. А раз это так, то по правилу Хунда, в атоме появляется максимальное число неспаренных электронов. Эта гипотеза получила название явления гибридизации, а орбитали, образующиеся в результате усреднения энергий подуровней, называются гибридными. Естественно, что при этом меняются и форма электронных облаков, и их расположение в пространстве. В зависимости от того, какие орбитали участвуют в образовании гибридных орбиталей, рассматривают различные типы гибридизации и пространственные конфигурации образовавшихся гибридных орбиталей (см. рис. 14.). Число получившихся гибридных орбиталей должно быть равно общему числу орбиталей, вступивших в гибридизацию. В зависимости от того, какие орбитали взаимодействуют между собой, рассматривают несколько типов гибридизации  [c.48]

    На валентный электрон в атомах элементов группы 1А (Е1, К, Се) действует эффективный заряд ядра приблизительно одинаковой величины. В случае лития этот заряд несколько меньше, чем для остальных элементов группы 1А, главным образом из-за того, что предшествующий валентному энергетический уровень занят всего двумя электронами. Эта особенность характерна и для других элементов второго периода и отличает их от других элементов соответствующих групп. Обращает на себя внимание большое отличие величин 2эфф для Е и Р, принадлежащих ко второму периоду. Это отличие показывает, насколько слабо экранирование электронами, находящимися на том же энергетическом уровне, что и рассматриваемый электрон именно это обстоятельство и приводит к уменьшению размеров атомов при переходе слева направо вдоль одного периода. [c.97]

    Из других элементов второго периода периодической системы бор и бериллий образуют расщепляемые на антиподы соединения, в которых центральный атом является четырехлигандным (т. е. связан с четырьмя атомами или группами от латинского слова ligare — связывать). Четырехлигандные соединения остальных элементов второго периода — лития, кислорода, фтора и неона — неизвестны. [c.64]

    Столь ясно выраженная у углерода и других элементов второго периода тенденция к образованию октета не проявляется у более тяжелых атомов, следовательно, не обнаруживается в третьем периоде периодической системы. Запоминающимся примером может служить пентафенилфосфор Виттига [2], в котором имеются пять атомных связей, и фосфор, таким образом, обладает децетом электронов. [c.41]

    Как и некоторые другие элементы второго периода, кремний не способен давать устойчивых двойных или тройных связей ни с другими атомами кремния, ни с углеродом, что, конечно, снижает возможности синтеза из кремнийорганических соединений высокополимерных материалов. Однако этот минус компенсируется свойственной диалкил (диарил) дихлорсиланам (и отсутствующей в случае диалкилхлорметанов) реакцией полимеризации (точнее товоря, поликонденсации) при гидролизе по схеме  [c.13]

    Атом бора имеет три валентных электрона и четыре валентные орбитали. Обычно он использует три орбитали, образуя 5р -гибриды в таких соединениях, как ВРз- Углерод имеет четыре валентных электрона и четыре орбитали. За исключением тех случаев, когда он образует кратные связи, эти орбитали используются для 5р -гибридизации. Атом азота имеет пять валентных электронов и четыре орбитали. Как правило, он образует три связи с другими атомами в структурах с тетраэдрической конфигурацией, а четвертая гибридная 5р -орбиталь у него занята неподеленной электронной парой (разд. 13-3). Углерод и азот способны образовывать двойные и тройные связи в результате я-перекры-вания, обсуждавшегося в разд. 13-4. По сравнению с длиной простой связи длина двойных связей, образуемых этими элементами, сокращается на 13%, а длина тройных связей-на 22%. Прочность кратной связи повыщается благодаря наличию электронов на связывающей молекулярной п-орбитали, возникающей в результате перекрывания атомных я-ор-биталей. Но перекрывание я-типа между орбиталями становится достаточно больщим для возникновения связи только при близком расположении атомов. По этой причине 81 и другие элементы третьего и следующих периодов неспособны образовывать кратные связи. Кремний имеет 10 внутренних электронов по сравнению с 2 в атомах С и N. Отталкивание этих внутренних электронов не позволяет двум атомам 81 сблизиться настолько, насколько это необходимо для достаточного я-перекрывания р-орбиталей и возникновения двойных связей. Несмотря на все попытки химиков синтезировать соединения со связями 81=81 и 81=С, ни одна из них до сих пор не увенчалась успехом. За небольшими исключениями, образование двойных и тройных связей ограничено элементами второго периода, в атомах которых число внутренних электронов не превышает 2. Исключения, к числу которых относятся 8=0, Р=0 и 81=0, объясняются перекрыванием между р- и -орбиталями, этот вопрос будет рассмотрен в разделе, посвященном кремнию. [c.271]

    Вместе с тем нужно обратить внимание и на черты сходства всех элементов подгруппы П1А. Из рис. 3.16 а, на котором пред- тавлена зависимость стандартных энтальпий образования кристаллических галогенидов рассматриваемых элементов от их порядкового номера, видно, что эта зависимость сложная и вместе с тем она однотипна для разных соединений. Поэтому сопоставление значений Л// для любых двух рядов галогенидов должно привести к зависимости, близкой к прямолинейной об этом свидетельствует рис. 3.16 6. Галв1гениды бора в данном сопоставлении исключены, поскольку это соединения элемента второго периода,они выпадают из общей закономерности. Кроме того, в отличие от других представленных на рис. 3.16 6 веществ. ВРз и ВС1з при [c.348]

    Сравнение различных свойств (температуры плавления и кипения, тепловые эффекты испарения) гидридов элементов IV—VII групп периодической системы показывает, что гидриды элементов второго периода (HF, Н2О, NH3) занимают особое положение по сравнению с другими однотипными соединениями врядах НР—H l-HBr-HI, НгО-НгЗ-НгЗе-НаТе, NH3-PH3-—АзНз—ЗЬНз. Анализ указанных данных показывает, что полная энергия межмолекулярного взаимодействия выше, чем определяемая через сумму ориентационного, индукционного и дисперсионного взаимодействий. Все это свидетельствовало о существовании еще одной своеобразной формы связи — связи через водородный атом, называемый водородной связью. [c.127]

    Строение атома азота характеризуется электронной конфигурацией 1з 2з 2р . Три р-электрона занимают разные орбитали 2рх, 2ру, 2рг и их спины неспарены. Потенциалы ионизации азота (эВ) /1 = 14,54, /2 = 29,60, /з = 47,43 — гораздо больше потенциалов ионизации других элементов V группы. Изменение первого потенциала ионизации элементов от фосфора (10,48) до висмута (7,29) меньше, чем различие между азотом и фосфором, что является еще одним указанием на своеобразный характер элементов второго периода. Высокое значение потенциала ионизации азота объясняет отсутствие соединений, содержащих положительные ионы азота (о их образовании в атмосфере см. ниже). [c.173]

    Таким образом, в отличие от других элемеитов периодической системы у водорода иет нстиппых элементов-аналогов вследствие исключительности строения его ато.ма. Не случайно только для соединений водорода в степени окисления +1 имеет место специфический вид связи — водородная связь Все это свидетельстЕ1уе,т о том, что в периодической системе водороду должно быть отведено необычное место (см. первый форзац книги). Водород по праву занимает одну протяженную клетку над элементами второго периода системы (исключая пеон). Такое расположение водорода в системе вгюлие логично, так как первый период содержит всего два элемента. [c.97]

    РЬ.менение характера связей оказывает сильное влияние на изменение свойств соединений. Так, у соединений элементов второго периода с фтором — Ь1Р, Вер2, ВРа, Ср4, КРз, ОР2, Р2 — характер связи изменяется от ионной у фторида лития (Л =4,1—0,97=3,13 /5=27 х X 10 " Кл-м) к неполярной ковалентной в молекуле фтора (Л=0 /7=0). Аналогичную зависимость можно наблюдать и у соединений элементов других периодов с одним и тем же элементом. [c.98]

    Во втором периоде (типическом) азот и, в особенности, кислород и фтор в отличие от элементов третьего периода фосфора, серы и хлора — имеют заметную тенденцию к снижению своих высших ступеней окисления и к ослаблению прочности одиночных гомонуклеарных связей. Правда, различие свойств элементов второго периода от элементов третьего периода уже не столь резко, как это было для Н и Не при сравнении их с металлами I и П групп. Это вполне естественно, так как кайносимметричность Н и Не особенно сильно проявлена между 15 -электронами и ядром нет никакого экрана, а 2р-электроны второго периода прежде всего более многочисленны (6 вместо 2) и отталкивают друг друга кроме того, они отталкиваются от 25 - и 15 -электронов. [c.40]


Смотреть страницы где упоминается термин Другие элементы второго периода: [c.18]    [c.530]    [c.306]    [c.587]    [c.325]    [c.359]    [c.83]    [c.289]    [c.138]   
Смотреть главы в:

Органическая химия -> Другие элементы второго периода




ПОИСК





Смотрите так же термины и статьи:

Второго периода элементы



© 2025 chem21.info Реклама на сайте