Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хлорид ниобия

    Содержание Технические хлориды ниобия (из конденсаторов) Технический Т С11 (из трубчатого конденсатора) Плав хлоридов РЗЭ (из хлоратора) [c.73]

    Хлориды титана и ниобия разделяют ионным обменом [34, стр. 98]. Смесь хлоридов ниобия и титана растворяют в концентрированной НС1 концентрация ниобия не должна быть более 30 г/л. Раствор пропускают через колонну, наполненную анионообменной смолой. Здесь адсорбируются оба металла. Колонну промывают 6—8 н. НС1. Раствор, вытекающий из колонны, содержит почти весь адсорбированный смолой Ti и около 10% адсорбированного Nb. Для полного удаления Ti колонну промывают 2—3 н. НС1. Извлечение остатков Ti сопровождается вымыванием 30% Nb. Около 60% остающегося на смоле Nb извлекают разбавленной НС1, содержащей 3—5 г/л NaF. Пятиокись ниобия, осажденная из последней фракции, содержит менее 0,1 % Ti при соотношении Nb Ti в исходном растворе 1 1. Промежуточную фракцию, содержащую 30% Nb с примесью Ti, возвращают в процесс. Выход ниобия - 90%. [c.78]


    Весьма перспективно электрохимическое восстановление хлоридов ниобия и тантала. В этом случае электрическая энергия расходуется непосредственно на восстановление. При металлотермическом же восстановлении пентахлоридов электроэнергия расходуется на получение металла-восстановителя и на восстановление N5 и Та. Однако промышленного применения эти методы пока не получили. [c.87]

    Технические хлориды ниобия с целью дальнейшей переработки гидролизовали при 00". Выделявшийся НС1 улавливали разбавленной соляной кислотой. Для лучшей отмывки осадка земельных кислот от железа и для лучшей коагуляции рекомендуется промывать осадок 2%-ным раствором НС1 с добавкой NH4 С1. Гидролиз осуществляли при отношении Т Ж=1 3. Технический Ti l4 содержит растворимые в нем примеси других хлоридов — ниобия, тантала, железа, алюминия, кремния, атакже продукты частичного гидролиза Ti U. Растворимость этих примесей в Ti l 4 приведена в табл. 16 [10]. Тетрахлорид титана, очищенный двойной ректификацией от примесей, представлял продукт, пригодны] для получения металлического титана и TiO 2. [c.74]

    НИЯ хлоридов ниобия и тан- качестве восста новителя предложен [c.84]

    МЕТОД очистки ХЛОРИДОВ НИОБИЯ и ТАНТАЛА ОТ ЖЕЛЕЗА [c.240]

    Больщое распространение получили способы с использованием органических растворителей после предварительного разложения руд и продуктов обогащения методами хлорирования, сульфатизации. Например, описаны способы разделения хлоридов кобальта и никеля с помощью ацетона, хлоридов и сульфатов кобальта и никеля с помощью сложных эфиров (этилацетат, изоамилацетат), насыщенных хлористым зодородом. Хлориды ниобия и тантала растворяют в спиртах или кетоне. [c.98]

    Ния получают раздельно три полупродукта плав хлоридов редких земель и тория, твердые хлориды ниобия и тантала и жидкий тетрахлорид титана Принципиальная схема переработки лопарита хлорированием представлена на рис 19 [c.85]

    В последние годы существенное внимание уделяется методу восстановления хлоридов тантала водородом Пентахлориды ниобия и тантала очищают от железа восстановлением водородом при 300° С, после чего тантал отделяют предпочтительным восстановлением пентахлорида ниобия водородом при 500°С до трихлорида ниобия Последний восстанавливают водородом при 00—1000° С до порошка металла Процесс осложняется склонностью высших хлоридов к гидролизу (с разложением образующихся при этом оксихлоридов при нагревании на окислы и пентахлориды) и диспропорционированием низших хлоридов ниобия [c.254]


    В растворы оксотрихлорида ванадия (V) и оксотри-хлорида ниобия (V) прилили соляную кислоту и внесли кусочки цинка. Напишите уравнения соответствующих реакций, имея в виду, что ванадий восстановился до двухвалентного, а ниобий — до трехвалентного состояния. Возможно ли в этих условиях восстановление тантала  [c.166]

    Для выяснения поведения железа в процессе его хроматографического отделения от хлоридов ниобия и тантала нами был проделан следующий эксперимент. По окончании хроматографического опыта колонка разрезалась по длине на несколько частей, угольные фракции сжигались и в них колориметрически определялось содержание железа. Для сравнения железо определялось в аналогичных условиях и в исходном угле. Полученные нами данные показаны на рис. 2. Как видно из рисунка, практически все железо было адсорбировано на первых 5 см длины колонки. [c.241]

    Проведена очистка хлоридов ниобия и тантала от хлорида железа методом газовой хроматографии. [c.241]

    Большинство переходных металлов (с переменной валентностью) образует летучие галогениды с температурами кипения ниже 900° С и многие ниже 500° С. К несчастью, галогениды этих металлов очень реакционноспособны по отношению к обычно применяемым органическим жидким фазам. В то же время органические жидкие фазы в большинстве случаев улетучиваются или разлагаются при температурах, значительно превышающих 350° С (гл. VI), и, следовательно, их применение для разделения неорганических соединений ограничено. Кроме того, неорганические галогениды легко гидролизуются, вследствие чего необходимо обеспечить поддержание безводных условий в избранной жидкой фазе. По сообщению Фрейзера [57 ] частичное разделение низко-кипящих тетрахлоридов олова и титана (температуры кипения соответственно 114 и 136° С) может производиться на нереакционноспособном насыщенном углеводороде (к-гексадекане) при 102 С. В более поздней работе Келлер [95 ] исследовал хроматографическое поведение хлорида ниобия (V) и хлорида тантала (V) (температуры кипения соответственно 240,5 и 242° С) на колонке со скваланом при 200° С. Однако в обеих указанных работах температуры колонок были на 40—60° С выше рекомендуемых для примененных в них жидких фаз (гл. VI). Насыщенные углеводороды, по-видимому, можно будет применять только при разделении низко-кипящих неорганических галогенидов. [c.403]

    Изотоп нильсборий-261 был получен при бомбардировке ядра америция-243 ядрами неона-22, а изотоп ннльсбо-рий-260 — при бомбардировке ядра калифорния-249 ядрами азота-15 (второй продукт — нейтроны). Составьте уравнения этих ядерных реакций. Рассмотрите возможную электронную формулу ато а нильсбория и обоснуйте проявление им максимальной (для элементов VB группы) степени окисления. Будет ли высший хлорид нильсбория более или менее летучим, чем высшие хлориды ниобия и тантала  [c.135]

    Спины соседних атомов металлов способны спариваться. Резкое уменьшение магнитного момента при образовании некоторых соединений, содержащих несколько атомов металла (сравнительно с изолированными атомами), явилось одним из указаний на возможность образования соединений, в которых существует связь между двумя атомами металла. Такие соединения встречаются среди карбонилов [например, (СО)бМп---Ке(СО)б], галогенидов, солей карбоновых кислот (карбоксилаты меди), халькогенидов и т. п. Возможно возникновение связей в группах атомов металла, содержащих 3, 4 и 6 атомов (кластеры). Такие скопления атомов металла встречаются в карбонилах и низших галогенидах (например, в хлориде ниобия ЫЬзСЬ). [c.201]

    При натрийтермическом восстановлении двух хлоридов ниобия на получение одного и того же количества 0,93 г ниобия расход натрия составил в одном случае 1,15 г, в другом 0,69 г. Вычислить эквивалент ниобия в этих хлоридах. Эквивалент натрия 23. [c.31]

    Недостатком способа хлорирования в расплавах хлоридов являются повышенные потери титана с возгонами, идущими в отвал. Из них 30—40% уносится в виде шихты из хлоратора и 10— 2% приходится на долю окси- и гидрооксихлоридов титана, образующихся при взаимодействии Ti U с кислородом н парами воды при высокой температуре Уменьшения потерь можно достигнуть при использовании шихты более крупного помола, полной герметизации конденсационной системы и тщательной осушке сырья. Представляет также интерес дохлорирование возгонов на угольной насадке разработанное применительно к получению хлоридов ниобия. [c.742]

    В последующей работе [148] авторы пропели очистку хлоридов ниобия и тантала от примеси железа на отмытом активном угле при 220 " С. При содержании в исходной смеси 15% ГеС1я в полученных образцах хлоридоп ниобия и тантала примесь железа пе была обнаружена. За один прием (20 мин) было получено до Ш г чистого пещества. [c.175]

    Хлорирование трбидизоваяной шихты. В качестве исходных материалов для получения хлоридов ниобия, тантала и титана можно использовать карбиды, которые приготовляют непосредственно из тита-но-тантало-ниобиевых концентратов [6, 45]. Карбиды этих элементов [c.76]

    Возможны различные методы экстракционного разделения Nb и Та. Например, по одному из методов экстрагируют из плавиковокислого раствора Nb и Та (в отсутствие ионов СГ). Тантал экстрагируется в органическую фазу, ниобий остается в водной фазе. По другому методу экстрагируют из пульпы, полученной в результате разложения колумбито-танталитовой руды плавиковой кислотой. При высокой концентрации НР (более 14 н). тантал экстрагируется совместно с ниобием. Из органической фазы Nb вымывают водой. По третьему методу экстрагируют из раствора высших хлоридов ниобия и тантала в гексоне раствором НР. Ниобий переходит в водную фазу. [c.81]


    Хлорирование ведут в ШЭП или хлораторах в расилаве ири температуре 850—1000°С. Количество нефтяного кокса в брикетах составляет 20—30% Извлечение полезных компонентов доходит до 997о- Таким образом, в процессе хлорирования просто и эффективно решается сложнейшая технологическая задача отделения тантала и ниобия от титана. Нелетучие хлориды РЗЭ, Са, Ма, К и др. при 450° С образуют расплав, периодически выпускаемый из ШЭП в изложницы. При этом необходимо учитывать наличие тория в плаве хлоридов и находящихся с ним в равновесии мезотория I и торона и предусмотреть соответствующие меры по вентиляции и борьбе с запыленностью. Плав хлоридов поступает на гидрометаллургическую переработку. Технический четыреххлористый титан н хлориды ниобия и тантала перерабатываются на индивидуальные хлориды. [c.86]

    Ю%. Предполагается, что ниобий внедряется в поры никелевого покрытия и придает им хрупкость. Со временем в объеме электролита выпадают низшие окислы ниобия. Положительных результатов не получено п при использовании метилового спирта, и при замене пентахлорида ниобия на пентабромид и пентайодид. Получены осадки до 4 мкм, из электролита, содержащего хлорид кобальта и хлорид ниобия, присутствие в них ниобия очень мало ( 0,03%). [c.63]

    ИСПОЛЬЗОВАНИЕ ПРИНЦИПОВ ГАЗОВОЙ ХРОМАТОГРАФИИ ДЛЯ ПРЕПАРАТИВНОЙ ОЧИСТКИ ХЛОРИДОВ НИОБИЯ И ТАНТАЛА ОТ ЖЕЛЕЗА [c.238]

    Прибор, использовавшийся нами, показан па рис. 1. После продувания колонки 1 хлором температура теплоносителя снижалась до 215— 220° и колонка вынималась из теплоносителя. Затем в условиях, исключающих попадание влаги (сухая камера), смесь хлоридов ниобия (или тантала) и железа загружалась в испаритель 2. После этого перетяжка 3 отпаивалась и колонка вновь погружалась в теплоноситель и через нее пропускался ток газа-посителя, предварительно очищенного от механических примесей и высушенного над пятиокисью фосфора. Очищенный хлорид ниобия или тантала собирался в приемнике 4, который по окончании опыта отпаивался. В качестве газа-носителя нами использовался первоначально хлор, а затем гелий и азот. Исходные количества очищаемых хлоридов варьировались в пределах от 1 до 10 г. Примесь ГеС1з составляла в различных опытах 1 — 15%. Выход хлоридов ниобия и тантала составлял 90—95%, время их прохождения в зависимости от температуры, скорости газа-носителя и загрузки пробы менялось от 5 до 20 минут. [c.240]

    Группировка и местоположение следов от осколков спонтанного деления ядер, образующихся при взаимодействии неона и америция (а их было зарегистрировано около 20), свидетельствовали о том, что спонтанно делящаяся активность принаддежит элементу, хлорид которою менее летуч, чем хлорид ниобия, но не уступает по летучести высшему хлориду гафния. Такие свойства хорошо согласуются с предсказанными для элемента № 105 — экатантала. [c.492]

    Написать уравнение реакции, считая, что ниобий переходит при этом в хлорид ниобила. [c.283]

    Выполнение работы. Перенести 3—4 капли прозрачного, отстоявшегося от порощка железа раствора три.хлорида ниобия, полученного в опыте 3, в чистую пробирку и прибавить к нему 2—4 капли раствора перманганата калия. Наблюдать изменение окраски раствора. [c.311]


Смотреть страницы где упоминается термин Хлорид ниобия: [c.276]    [c.612]    [c.487]    [c.66]    [c.372]    [c.187]    [c.51]    [c.75]    [c.82]    [c.372]    [c.1546]    [c.1547]    [c.1859]    [c.85]    [c.187]    [c.86]    [c.374]    [c.239]    [c.239]    [c.241]    [c.72]   
Химические свойства неорганических веществ Изд.3 (2000) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте