Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Железо адсорбция восстановление водородо

    Для кобальта, железа и рения условия адсорбции, по-видимому, весьма близки к описанным для никеля [37, 100]. Очистка поверхности перечисленных металлов от адсорбированного кислорода восстановлением водородом при температурах ниже 770—800 К так же сложна, как и в случае никеля. Восстановление окисленной поверхности железа протекает значительно труднее, а восстановление окисленной поверхности кобальта — несколько труднее, что, вероятно, объясняет необычно медленное и слабое поглощение водорода, которое наблюдали Адриан и Смит [101] на катализаторе Со — кизельгур (предварительно восстановленном при 690 К в течение 15ч), [c.327]


    В пользу такого механизма реакции свидетельствует также факт уменьшения скорости восстановления окислов железа в присутствии небольших количеств водяного пара. Это объясняется тем, что молекулы воды занимают часть активных центров на поверхности руды, т. е. отравляют ее, препятствуя адсорбции молекул водорода. [c.220]

    В большой мере ускоряются реакции окисления и восстановления. При измельчении под вакуумом значительно уменьшается опасность инактивации вновь образованной поверхности вследствие адсорбции паров влаги и газов, содержащихся в воздушной среде. Например, дезагрегация окислов железа до частиц размером <3 10 мк в сверхскоростной ударно-центробежной мельнице под вакуумом позволила сократить время восстановления водородом до [c.304]

    Sn " , которые, как известно, увеличивают водородное перенапряжение, замедляют таким образом коррозию железа в кислотах и способствуют восстановлению органических веществ на железном катоде. Ионы Sn постоянно образуются на поверхности железа при коррозии оловянного покрытия, однако после растворения слоя олова их концентрация падает. Возможно также, что разность потенциалов пары железо—олово благоприятствует адсорбции и восстановлению на катоде органических деполяризаторов, в то время как при меньшей разности потенциалов эти процессы не протекают. Существенным недостатком консервной тары является так называемое водородное вспучивание, которое связано со значительным возрастанием давления водорода в банке. При этом допустимость использования консервов становится сомнительной, так как накопление газов в банке происходит и при разложении продуктов под действием бактерий. [c.240]

    Важным обстоятельством при восстановлении ионов металла водородом является участие водорода в реакции не в молекулярном, а в атомарном виде. Процесс Нг - 2Н° протекает при адсорбции подаваемого газообразного водорода на зернах металла, поэтому процесс вытеснения носит ярко выраженный гетерогенный характер. Для начала вытеснения в раствор необходимо вводить затравку — зерна порошка никеля или железа, служащие катализатором. Дальнейшее восстановление может протекать уже с участием порошка, образующегося при вытеснении. [c.245]

    Выделение металлов группы железа требует высокого потенциала поляризации катода. Это явление объясняют разнообразными причинами [8, 50] ингибирующим действием выделяющегося совместно с металлом водорода образованием устойчивой водородной пленки или гидрата на поверхности металла малой скоростью дегидратации ионов при разряде на катоде химической поляризацией адсорбцией чужеродных частиц сложным механизмом разряда никеля, включающим стадии образования и восстановления на катоде гидрата никеля. [c.134]


Фиг. 6. Изотермы адсорбции водорода на железе, восстановленном при 450° (Бентон). Фиг. 6. <a href="/info/360399">Изотермы адсорбции водорода</a> на железе, восстановленном при 450° (Бентон).
    Известны разные способы обновления поверхности твердых электродов внутри раствора, являющиеся вариантами механической очистки поверхности. Эти методики особенно интересны при изучении явлений пассивации [286, 517, 518] а также адсорбции кислорода и водорода [594, 161]. Томашов и Вершинина [567] исследовали кинетику различных электродных процессов (например, разряд водорода, восстановление кислорода, анодное растворение металла) на электродах с непрерывно обновляемой поверхностью и на таких металлах, как железо, никель и палладий, и наблюдали значительные уменьшения перенапряжений. Кроме того, на некоторых из этих металлов при достаточно быстрой очистке их поверхности исчезало ингибирующее влияние адсорбированных ионов галогенов и катионов тетрабутиламмония на водородное перенапряжение. По-видимому, в этих условиях повторная адсорбция ионов не успевала происходить. [c.170]

    Медьсодержащие катализаторы часто используются в производстве аммиака для конверсии монооксида углерода в диоксид углерода и водород (реакция водяного газа). Медные катализаторы очень активны в этой реакции и поэтому используются при более низких температурах, чем железо-хромовые катализаторы высокотемпературной конверсии монооксида углерода. Для низкотемпературной конверсии наиболее распространенным ядом является хлор, хотя, поскольку медь в катализаторе находится в восстановленном состоянии, сера также отравляет его. Адсорбция даже 0,05% (масс.) хлора может привести к потере активности. Это соответствует концентрации хлора в газовой фазе порядка 0,001—0,003 р. р. т. Отсюда возникают требования очень высокой степени очистки для полного удаления яда. [c.89]

    Железо, восстановленное из окислов в виде высокодисперсного порошка, по данным Н. И. Никитина [149], обладает несравненно большей способностью к поглощению водорода, чем взятое от компактного куска, по-видимому, в результате наложений явлений адсорбции. [c.118]

    Применимость этого уравнения для описания адсорбции водорода на восстановленных образцах железа рассматриваемого типа показана в работе [14]. [c.207]

    Сущность процесса реагентной деструкции заключается в разрушении красителей и ПАВ с помощью кислотного гидролиза, восстановлении атомарным водородом в момент его выделения при взаимодействии подкисленного серной кислотой стока с железными стружками, щелочного гидролиза и адсорбции продуктов расщепления органических веществ на хлопья гидроксидов железа при последующем подщелачивании. [c.35]

    Адсорбционные измерения. При исследовании адсорбции использовали растворы присадок в толуоле и порошки металлов, восстановленные в водороде. Порошок встряхивали (10 г) с 25 мл раствора в течение 4 ч (продолжительность времени, принятая как достаточная для достижения равновесия). Порошок железа отделяли от раствора магнитом, а порошок хрома — центрифугированием. Раствор анализировали на содержание фосфора. Ко- [c.23]

    Авторы работы/[19] в результате измерения межфаз-ного поверхностного натяжения на границе амальгамы натрия и раствора хлорида натрия показали, что в присутствии солей кальция, магния и бария оно понижается. Это свидетельствует об адсорбции гидроокисей металлов на амальгаме. По измерениям краевых углов капель амальгамы натрия на поверхности никеля и железа выявлено, что в присутствии солей магния и кальция смачивание этих металлов затрудняется. Ингибирующее действие добавок солей кальция и магния авторы объясняли тем, что пленки гидроокисей, образующихся на поверхности металлов, препятствуют восстановлению металлов, катализирующих разряд водорода. Ионы кальция могут быть ускорителями или замедлителями процесса разряда водорода на амальгамном катоде в зависимости от присутствующих в рас- [c.31]

    В СВЯЗИ С ЭТИМ возникает вопрос первичным или вторичным ингибитором является ФАК Иначе говоря, имеются ли на поверхности корродирующего металла продукты превращения ФАК и можно ли им приписать ответственность за адсорбцию и ингибирование. С помощью весьма чувствительной реакции арсина с раствором хлорида двухвалентной ртути в эфире можно обнаружить следы продукта (IV). Однако в газовой атмосфере над корродирующим железом в соляной кислоте и в водном растворе кислоты арсин обнаружен не был. Интересно, что в этих же условиях при замене железа на цинк ар-син обнаруживается. Вероятно, в указанных условиях при выделении водорода на железе ФАК либо не восстанавливается, либо восстановление идет до образования промежуточных продуктов (II) и (III). [c.50]


    Железо. На рис. 11 показаны теплоты адсорбции водорода на восстановленном железе и на промотированном железном [c.339]

    Как показали Кван и сотрудники, дифференциальная теплота адсорбции водорода на восстановленном железе даже при малых степенях заполнения поверхности закономерно уменьшается с уве- [c.344]

    Осн. работы относятся к химии поверхностных соед. и гетерогенному катализу. Выдвинул (1933) одну из первых теорий поверхностных промежуточных соед. в катализе. Наряду с X. С. Тэйлором установил (1935) определяющую роль энергии активации в возникновении разных типов хемосорбции. Совм. с С. Брунауэром и Э. Теллером разработал (1938) метод определения удельной поверхности порошкообразных и пористых ТВ. тел, основанный на теории полимолекулярной физической адсорбции газов (метод БЭТ). Изучал совм. с Брунауэром механизм промотирования катализаторов, установил (1940) диспропорционирование состава поверхностных слоев под влиянием сорбции промоторов. Посредством изотопных методов изучил (1950) механизм начальных стадий синтеза углеводородов на основе оксида углерода и водорода. Независимо от Э. В. Брицке и А. Ф. Капустинского открыл явление термической диффузии в р-циях восстановления оксида железа (II) водородом. [c.523]

    Отличительной особенностью адсорбции этана при —183 или —195°, удобной для практического использования, является низкое давление насыщенного пара (0,0083 и 0,0017 Л1м рт. ст. соответственно). В соответствии с этим мала поправка на мертвое пространство (см. стр. 352), Эта особенность использовалась рядом исследователей. Первое исследование, по-видимому, принадлежит Вутену и Брауну [64], которые брали для молекулы этана Л, = 24 А , в то время как Росс [65] полагал Лт = 23 А при адсорбции на хлоридах натрия и калия и двуокиси титана, основываясь на сравнении с площадью, определенной по изотермам азота. Однако Джонсон и др. [66], а позже О Коннор и Улиг [67] использовали значение 20,5 А , основываясь на плотности твердого этана. В этом случае получено удовлетворительное соответствие значений удельной поверхности, рассчитанной методом БЭТ, и геометрической площади для стержней и шариков из стекла пирекс в качестве адсорбента. Например, по данным адсорбции этана при —183° шарики имели площадь поверхности 142 сл1 и геометрическую площадь 137 см . Для фольги железа, восстановленной водородом при 1000°, а затем откачанной при 400°, было получено значение фактора шероховатости г, равное 1,2. Для нержавеющей стали, травленной кислотой, г = = 1,4, а для полированной электрически — 1,12. [c.98]

    Применение мёссбауэровской спектроскопии для изучения поверхности можно проиллюстрировать на примере исследования дисперсных катализаторов Pt—Fe, нанесенных на графитированный углерод [127]. Наблюдаемые спектральные линии разлагали на компоненты с помощью ЭВМ. Снятые при комнатной температуре спектры образцов, полученных восстановлением водородом при 770 К, обычно характеризовались кривыми, которым лучше всего удовлетворяли два квадрупольно расщепленных дублета (рис. 11). Внешний, менее интенсивный дублет с широкими линиями приписан поверхностным атомам, а внутренний дублет с узкими линиями — атомам объемной фазы. Долю поверхностных атомов железа можно оценить по площадям, ограниченным соответствующими линиями, при условии что вероятность испускания без отдачи для атома поверхности и атома объемной фазы одинаковы. В общем случае это не должно выполняться, потому что поверхностные атомы связаны в кристаллите менее прочно. Авторы [127] обошли эту трудность, измеряя зависимость спектральных данных от величины адсорбции газов и используя предположение, что поверхностный атом железа, на котором адсорбирован водород или 28  [c.435]

    Исследуя металлические пленки, Бик [29] нашел, что азот хе-мосорбируется на пленке из чистого железа при температуре жидкого азота. Железный катализатор синтеза аммиака не хемо-сорбирует азот при температуре жидкого азота или Жидкого кислорода, что видно при сравнении изотерм низкотемпературной адсорбции азота и окиси углерода на непромотированном катали заторе [30]. Суммарная адсорбция СО на катализаторе 973 при —183° приблизительно в два раза превышала количество азота, соогаетствующего монослою последнего при этой температуре половину этого количества СО легко можно было откачать при —78°, так что эта часть, повидимому, адсорбирована физически. Куммер и Эмметт [31], применившие метод меченых атомов, нашли, что непромотированное железо после восстановления и тща-. тельной откачки не удерживает заметных количеств водорода, и, таким образом, исключается возможность того, что низкотемпературной хемсорбции азота препятствует не удаленный при откачке водород. [c.19]

    Медь и железб, как установили Мюллер и Барк, имеют наибольшую активность из всех изученных катализаторов. В присутствии медной и железной спиралей в опытах авторов окись азота разлагалась уже при температуре порядка 300 " С. Такие катализаторы, как цинк, марганец, магний, заметно разлагали N0 при температуре / = 500—600 °С. Наименее активными оказались хром, латунь и алюминий. Эти катализаторы практически не ускоряют реакцию в области температур <600 °С. При i = 300° , как установлено в работе [268], в результате инактивации катализатора, вызванной адсорбцией кислорода, окись азота разлагалась на железной спирали, восстановленной в атмосфере метилового спирта или водорода, только на 45,7%. При этой температуре N0 на медной спирали разлагалась на 637о, однако уже при / = 400 °С в случае восстановленного железа разложение окиси азота было полным. Для меди разложение N0 на 1007о имело место при температуре = 500 °С. [c.105]

    Во-первых, должен быть установлен механизм образования связей С—С на таких обычных катализаторах, как восстановленное железо или кобальт. Трактовка механизма, как включающего полимеризацию поверхностных соединений и конкуренцию между полимеризацией и реакцией обрыва, регулирующей длину углеводородной цепочки, в какой-то мере является спекулятивной, поскольку она основана на косвенном Доказательстве. Как при метанировании, так и в синтезе Фищера — Тропша было постулировано образование частично гидрогенизиро-ванного на поверхности энола в форме радикала НСОН , а его реакции с образованием метана или конденсация с образованием углеводородной связи С—С были приняты в качестве медленной стадии. Недавние данные, однако, показывают, что наиболее медленной стадией может быть разрыв связи С—О в адсорбированном оксиде углерода. Ряд последних экспериментальных результатов подтверждает правильность этого частного механизма. Измерение кинетического изотопного эффекта показало, что на нанесенных N1, Ки и Р1 реакции Н2 + СО—>- и Оа+СО—>- протекают при идентичных скоростях, откуда следует, что водород не участвует в стадии, определяющей скорость [51]. Исследования на N1 и на N1—Си-сплавах показали, что необходимый для катализа ансамбль из смежных активных мест вызывает диссоциацию СО перед реакцией с водородом [52]. В соответствии с последними измерениями на никеле, проведенными методами ДМЭ и УФЭС, совместная адсорбция Нг и СО не приводит к образованию поверхностного энольного комплекса, поэтому может потребоваться предварительный распад СО, чтобы могло произойти гидрирование СО [53]. Эти данные согласуются с данными, полученными методом инфракрасной спектроскопии при изучении активных мест на Ки-, КЬ- и Pt-катализаторах, нанесенных на оксид алюминия, которые указывают на то, что в течение реакции Нг и СО поверхность покрыта преимущественно адсорбированным СО без каких-либо признаков существования поверхностного комплекса формила НСО— [54]. Должны быть выяснены такие важные свойства поверхности, как энергия связи СО, возможность одновременной адсорбции СО и Нг, а также необходимость придания катализаторам других структурных или электронных свойств. Они должны помочь в понимании вариаций селективности, наблюдаемых при сравнении действия различных металлов, а также вызываемых такими промоторами, как калий. [c.275]

    Подобная программа исследования была применена уже неоднократно при исследовании дисперсности катализаторов магнитным методом. Однако успех исследования магнитных свойств активных центров будет существенно зависеть от выбора объекта. Наиболее подходящим, объектом для исследования магнитных свойств активных центров яв-лякэтся образцы, получаемые путем адсорбции из раствора ионов железа или никеля на поверхности слабомагнитных носителей (АЬОз, 5102, уголь и др.), которые после соответствующего восстановления в токе чистого водорода могут дать в зависимости от концентрации их на поверхности частицы различной крупности. Вследствие того, что всякая попытка получать атомы ферромагнитных металлов связана с дроблением компактного ферромагнетика на все более мелкие частицы, выво- [c.143]

    Цеолиты с обменными катионами железа готовили путем ионного обмена с последующей обработкой в вакууме при 350° С. Цеолиты, содержащие железо в виде FejOg, получали восстановлением ионообменных образцов в токе водорода с последующим окислением. Спектры адсорбированного пиридина регистрировали после адсорбции пиридина на цеолитах и удаления избытка адсорбата вакуумированием образца при 180° С. В спектрах наблюдалась интенсивная полоса поглощения ионов пиридиния при 1540 см , свидетельствующая о наличии бренстедовской кислотности. Интенсивность этой ПОЛОСЫ, а следовательно, и концеетрация кислотных центров увеличивались с ростом степени обмена. Число кислотных центров на образцах, активированных двумя различными методами, было одинаковым, хотя оно составило 2/3 от концентрации этих центров в образце декатионированного цеолита Y, прошедшего аналогичную предварительную термообработку. Г идроксильные группы с частотой колебаний 3640 см обладают кислотными свойствами. В спектрах адсорбированного пиридина проявляется полоса при 1443—1445 см , отнесенная к молекулам пиридина, которые взаимодействуют с ионами железа. Интенсивность этой полосы в спектрах цеолитов X больше, чем в спектрах цеолитов типа У, и она уменьшается с увеличением степени обмена. [c.292]

    Взаимоотношения между гомогенным и гетерогенным катализом изучены лишь слабо главным образом потому, что элементы, способные дать начало обоим видам катализа, пе исследованы по всему интервалу переменных (например, pH и концентрации), определяюнгих состояние катализатора. В качестве катализатора, нри котором можно наблюдать переход от гомогенного механизма к гетерогенному, можно назвать железо. В кислом растворе реакция чисто гомогенная. Однако если увеличивать pH, начинает появляться коллоидное вещество и одновременно происходит изменение скорости (см. рис. 76 на стр. 440). При еще более высоких pH может наблюдаться образование макроскопического осадка, а также и другие кинетические изменения. На скорость катализа могут влиять и изменения физической формы (наличие носителя для катализатора, спекание катализатора или изменение кристаллической структуры). Хотя еще не вполне точно определен pH, при котором начинает появляться коллоидное вещество, не подлежит никакому сомнению факт перехода от гомогенного разложения к гетерогенному при повышении pH. Однако существуют еще значительные неясности по вопросу природы изменения механизма. В некоторых случаях оба вида разложения могут быть качественно объяснены одним и тем же механизмом, например циклическим окислением и восстановлением. В то же время образование комплекса или осаждение катализатора в коллоидном или твердом состоянии может определить т -долю от общего количества имеющегося катализатора, которая способна фактически участвовать в реакции и таким образом влиять на наблюдаемую скорость разложения. Такого рода случай комплексообразования встречается при катализе полимеризации действием перекисей [79]. При чисто гетерогенном катализе наблюдаемая скорость зависит от степени дисперсности твердого катализатора, так как эта дисперсность определяет размер поверхности, находящейся в контакте со средой. Наоборот, вполне возможно, что при переходе от гомогенной системы к гетерогенной коренным образом изменяется и характер реакции, которой подвергается перекись водорода, например ионный механизм может перейти в радикальный. Возможно, что при изменении условий имеется сравнительно тонкая градация в переходе от одного механизма к другому. При выяснении различий гомогенного и гетерогенного катализа нужно всегда учитывать возможное влияние адсорбции из раствора на гомогенный катализ. Так, одновалентное серебро, не обладающее каталитическими свойствами нри гомогенном диспергировании, легко адсорбируется стеклом [80]. В адсорбированном состоянии оно может нриобрести каталитические свойства в результате либо истинного восстаровления до металла, либо только поляризации [81]. Последующее использование поверхности стекла в контакте с более щелочным раствором также может активировать адсорбированное серебро. Это особенно заметно в случае поверхности стеклянного электрода. [c.393]

    Хемосорбция азота в атомарной р-форме легче всего идет на металлах, имеющих в -полосе три или большее число вакансий, т. е. на Та, Мо, Т1, 2г, Ре. Сюда же можно отнести такие элементы, как Са и Ва. Железо адсорбирует азот при низких температурах с выделением тепла в количестве от 10 ккал-моль при 0 = О до 5 ктл-моль при 0=1. Возможна также активированная адсорбция азота, при которой теплоты адсорбции изменяются от 70— 40 ктл-моль" при 0 =0 до 16 ккал-моль при 0=1. Имеются данные, свидетельствующие, что при 6 = 1 на один атом азота приходится пять атомов поверхности железа. Однако это состояние временное, так как азот может растворяться в а-железе до количеств, соответствующих составу РегЫ. При нагревании такого азотированного железа происходит выделение молекулярного азота по бимолекулярной реакции. Кажущееся уменьшение ДЯ с заполнением поверхности скорее может быть обусловлено растворением в объеме, чем поверхностным взаимодействием. Изотопный обмен у азота легко проходит при 250° на осмии и при примерно 450° на молибдене и на промотированных железных катализаторах, но при температурах выше 1100° К обмен следует проводить на вольфраме. Промоти-рованные железные катализаторы, используемые для синтеза аммиака, обычно готовят восстановлением в водороде при 500° смеси 95% Рвз04 с 4—5% А Од и О—1% К2О. [c.164]

    Поэтому увеличение скорости восстановления ионов железа при совместном восстановлении с никелем связано с тем, что способность сплава никель — железо поглощать водород меньше по сравнению с железом. Резкое замедление восстановления ионов никеля при совместном осаждении с железом может быть обусловлено повышенной адсорбцией гидроокисных соединений на поверхности сплава по сравнению с раздельным выделением металлов, так как гидра-тообразование в случае солей железа наступает в более кислой области, чем в случае никеля. [c.203]

    Надо полагать, что восстановление фосфата газообразными восстановителями связано или с адсорбцией газа или механизм восста- новления объясняется столкновением газообразныхмолекул с поверх- I ностью фосфата. Мы не имеем данных прямого исследования этого вопроса для выводов о механизме взаимодействия фосфата и газа, но на основании опытов А. П. Любана, можно заключить, что соотношение скоростей реакций восстановления фосфата водородом и окисью углерода находится в согласии с выводами из кинетической теории газов [1 ]. Г. И. Чуфаров и Е. П. Татиевская, основываясь на теории адсорбции, вывели кинетическое уравнение процесса восстановления окислов железа водородом и окисью углерода, 1 [c.90]

    При адсорбции ФАК и п-АФАК (рис. 2.24) в первые 3—5 с наблюдается заметное ускорение катодного процесса, которое сменяется затем эффективным торможением. Как уже отмечалось, на поверхности железа, контактирующего с кислотой, ингибированной ФАК, методом РФЭС обнаружены соединения мышьяка в степени окисления +3. В связи с этим можно считать, что кратковременный резкий подъем катодного тока связан с тем, что параллельно реакции выделения водорода идет быстро заканчивающийся на поверхности процесс восстановления добавок до промежуточных стадий окисления мышьяка. Образовавшиеся при этом хемосорбированные продукты (фениларсиноксид или соответствующая кислота) тормозят электродный процесс как вторичные ингибиторы. Длительное время достижения минимального тока (около 200 с) подтверждает хемосорбционное поверхностное взаимодействие. [c.63]

    Основной минерал циркония, представленный в циркониевых рудах, —это циркон, в меньшей мере — бадделеит. Обычно их получают как побочные продукты при добыче титановых руд. При механическом обогащении руд получается концентрат, который поступает на химическое извлечение циркония и гафния. Наиболее распространенный метод извлечения основан на восстановлении циркония графитом до карбида, который затем хлорируют. Карбидный процесс осуществляют в плавильной дуговой печи при 1800°, хлорирование — в шахтной печи при 500°. Отходящие газы — продукты хлорирования охлаждают до 100° при этом отогнанный 2гСи (вместе с НГСЦ) конденсируется, а более летучие хлориды кремния, титана и алюминия отгоняются. Хлориды циркония и гафния очищают от железа и нелетучих примесей возгонкой в атмосфере водорода, который восстанавливает трихлорид железа до нелетучего дихлорида. Следующий этап — разделение циркония и гафния. Недавно этот процесс имел чисто научный интерес, теперь он приобретает важное практическое значение. Апробированы десятки методов разделения этих элементов. В основе методов лежат дробная (фракционная) кристаллизация, дробное осаждение и термическое разложение соединений, сублимация и дистилляция галогенидов, адсорбция и ионный обмен, селективная экстракция. Наиболее перспективен экстракционный процесс он не столь трудоемок и его легко оформить как непрерывный. Мы остановимся на методе дробной кристаллизации и экстракционном. [c.163]

    С результатами, полученными в области меньших давлений. В противоположность всем этим данным, согласно Бику [28], в случае напыленных в вакууме пленок железа теплоты адсорбции водорода значительно выше и при всех степенях заполнения поверхности, начиная от очень малых заполнений до полного покрытия, имеют постоянное значение, близкое к 30 ккал на 1 моль Нг. Существующее расхождение между адсорбцией водорода на напыленных железных пленках и на массивном образце восстановленного железа весьма удивительно, и для выяснения этого вопроса потребуется провести дополнительные исследования. [c.340]

    Пищевые продукты, помимо кислот и щелочей, содержат различные органические вещества. Некоторые из этих веществ, как упоминалось выше, являются комплексоббразующими агентами, другие действуют как ингибиторы коррозии или как катодные деполяризаторы. Пищевые продукты с малым содержанием веществ-ингибиторов и высоким содержанием веществ-деполяризаторов могут вызвать более сильную коррозию пищевых сосудов, чем продукты с высокой кислотностью. Из-за присутствия органических деполяризаторов коррозия оловянного покрытия на внутренней поверхности сосудов обычно происходит при отсутствии или очень небольшом выделении водорода. Замечено, что, после того как оловянное покрытие полностью прокорродирует, дальнейшая коррозия обычно сопровождается выделением водорода. Причина такого поведения точно не установлена, ее можно связать с тем, что ионы которые известны как ингибиторы коррозии железа в кислотах, повышают перенапряжение выделения водорода, способствуя этим восстановлению органических веществ на железном катоде. Двухвалентные ионы олова непрерывно образуются на поверхности железа в процессе коррозии слоя олова, однако после его полного растворения их становится недостаточно. Возможно также, что при разности потенциалов пары Ре—5п происходит адсорбция и восстановление органических деполяризаторов на катодных участках, а при меньших разностях потенциалов эти процессы не имеют места. Консервные банки могут разрушаться также вследствие так называемого водородного вспучивания в результате возникновения внутри банки значительного давления водорода. [c.193]

    На основании данных эл ектрохимической кинетики можно различать два основных вида химической адсорбции анионов первый, при котором адсорбция анионов приводит к ускорению восстановления катионов вследствие смещения потенциала нулевого заряда в отрицательную сторону, и второй, при котором адсорбция анионов приводит к торможению восстановления катионов. В этом случае мы говорим о смещении потен-]щала нулевого заряда в положительную сторону. Одно и то же вещество может, в зависимости от условий, давать и один, и другой вид адсорбции. По данным Н. Я, Бунэ и Я. М. Колотыркина [10], при упрочении связи поверхности свинцового электрода с анионом снижение перенапряжения водорода уменьшается. По данным 3. А. Иофа и Л. А. Медведевой [11], ион иода влияет на перенапряжение водорода на железе иначе, чем на ртути. [c.254]

    Следует отметить, что восстановление азота идет гораздо легче, чем его окисление. Данные по катодному восстановлению азота на различных металлах приведены на рис. 5. Здесь мы снова сталкиваемся с двойственным поведением железа. В тех случаях, когда потенциал адсорбции азота на железе отрицательный (—400 мв), восстановление азота идет беспрепятственно перенапряжение процесса в этих случаях на железе является наименьшим из всех исследованных металлов. На кобальте перенапряжение несколько выше, далее идет медь и затем серебро. Наибольшее перенапряжение процесса наблюдается также на железе, но в той серии опытов, когда потенциал адсорбции азота оказывался положительным (300—350 мв). После завершения катодной поляризации железная пленка в этих случаях оказывалась нерастворимой в кислотах, для ее растворения необходимо было предварительное восстановление в водороде. По-видимому, установление положительного потенциала при адсорбции азота на железе связано с образованием поверхностного слоя нитридов железа. К сожалению, проведение рентгено-структурного или электронно-микроскопического анализа нитридного слоя было сильно затруднено вследствие легкой его окисляемости. Следует, однако, иметь в виду, что в условиях синтеза аммиака, т. е. в азотоводородной смеси, нитридный слой практически не может образоваться вследствие восстанавливающего действия водорода. [c.127]

    Адсорбция дибензилсульфоксида на меди и никеле была изучена Смяловским и Склярской-Смяловской [190] с применением спектрофотометрического метода. Альдегиды, непредельные углеводороды тоже подвергаются восстановлению под действием водорода, выделяющегося при катодной поляризации и при стационарном потенциале [191]. Спирты, образующиеся при восстановлении альдегидов, хуже адсорбируются на поверхности металлов, что приводит к постепенному понижению ингибирующего действия альдегидов. В литературе имеются указания на то, что этиленовые производные наряду с процессами восстановления склонны к реакциям полимеризации (акрилонитрил на железе) [150]. [c.227]


Смотреть страницы где упоминается термин Железо адсорбция восстановление водородо: [c.243]    [c.85]    [c.166]    [c.227]    [c.246]    [c.34]    [c.454]    [c.166]    [c.128]    [c.340]    [c.225]    [c.226]    [c.420]    [c.227]   
Структура металических катализов (1978) -- [ c.224 , c.231 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбция водорода



© 2024 chem21.info Реклама на сайте