Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теплоноситель коэффициент теплопередач

    Алгоритмы приведены в табл. 11.3, где кружками обведены номера формул, используемых для задания начальных приближений при проведении итеративных расчетов. Для ускорения сходимости итеративных расчетов используется блок Итерация . Вектор оборудования данного моделирующего блока содержит следующие параметры перепады давлений в трубном и межтрубном пространстве модуль к базовые расходы для расчета коэффициента теплоотдачи по трубному и межтрубному пространствам коэффициенты а и Р признак агрегатного состояния теплоносителей коэффициент теплопередачи площадь теплообмена. [c.596]


    При испарении пузырька агента в инертной среде, даже при паросодержании, равном нескольким процентам, величиной среднеобъемной плотности пузырька можно пренебречь по сравнению с плотностью теплоносителя. Коэффициенты теплопередачи при испарении пузырька, взвешенного в турбулентном потоке жидкости, В отличие от таковых при свободном всплывании пузырька, не зависят от размера последнего. [c.62]

    Зависимость = / (у) показана на рис. -16, откуда видно, ято при небольших изменениях скорости теплоносителя коэффициент теплопередачи линейно зависит от V. [c.274]

    Для достижения высоких коэффициентов теплопередачи теплоносители следует пропускать через аппарат с большими скоростя.ми однако при этом возрастает гидравлическое сопротив ление. Кроме того, для получения высокого коэффициента теплопередачи поверхность теплообмена должна быть свободна от загрязнений, а для удаления образующихся загрязнений она должна быть доступна для очистки. При увеличении скорости одного из теплоносителей коэффициент теплопередачи заметно повышается лишь в том случае, если коэффициент теплоотдачи 0 стороны другого теплоносителя достаточно высок, а тепловое сопротивление стенки и загрязнений невелико. Так, если коэффициент теплоотдачи в межтрубном пространстве значительно ниже, чем в трубах (например, в межтрубном пространстве проходит газ, а по трубам жидкость), то возрастание скорости в трубах почти не влияет на величину коэффициента теплопередачи в этом случае следует увеличить коэффициент теплоотдачи в межтрубном пространстве, например, путем установки в нем перегородок. [c.438]

    Здесь Ко — коэффициент, учитывающий наличие люков, не используемой тарелками части колонны (Ко=1.18) Цк —стоимость материала колонны, тыс. руб,/т Рп —плотность пара, кг/м нип — допустимая скорость пара в свободном сечении колонны, м/с т) — к. п. д. тарелки g — масса тарелки, отнесенная к 1 м ее поверхности, т/м р — плотность материала корпуса колонны, т/м Я — расстояние между тарелками, м г — удельная теплота испарения дистиллята. кДж/т 0 — продолжительность работы установки, ч/год Ц,- —цена теплоносителя, используемого при эксплуатации кипятильника и цена хладоагента в дефлегматоре, тыс./руб. т Дй,- — изменение энтальпии теплоносителя и хладоагента, МДж/т К1 — коэффициент теплопередачи в кипятильнике и дефлегматоре, МВт/(м -К) А ср — средняя разность температур при теплопередаче, С. [c.104]

    А — коэффициент теплопередачи от реагирующей смеси к теплоносителю, учитывающий конечную скорость конвективной теплопередачи на внешней и внутренней сторонах стенки реактора и теплопроводности через стенку. [c.159]


    Если предположить, что коэффициент теплопередачи и удельные теплоемкости теплоносителей не изменяются вдоль поверхности теплообмена и обозначить [c.17]

    Коэффициент теплопередачи к в ккал м час для различных теплоносителей [c.160]

    При определении размеров поверхности теплообмена с помощью уравнения Q = РкМ расчет коэффициента теплопередачи производится по формулам, приведенным в предыдущих главах. Все эти формулы содержат выраженные в безразмерных единицах величины, характеризующие свойства теплоносителей. Теплофизические константы веществ зависят от температуры и давления. В большинстве случаев значения теплофизических констант, приведенные в таблицах, даются для отдельных тем ператур, при которых эти значения были получены в опытах. Простая интерполяция или экстраполяция этих данных возможна лишь в случае линейной (или почти линейной) зависимости от температуры, что имеет место,- например, при использовании данных по плотности, удельной теплоемкости и удельной теплопроводности. [c.164]

    Решение задачи теплообмена между двумя теплоносителями, разделенными теплопередающей стенкой (например, между горячей и холодной водой, между конденсирующимся паром и нагреваемым газом и т. д.), сводится в основном к определению коэффициента теплопередачи к. При этом необходимо во всех случаях отдельно определить три величины, которыми характеризуется ко- [c.165]

    I — длина трубки в м п — количество ходов с — скорость теплоносителя в м/сек к — коэффициент теплопередачи в ккал/м- час С  [c.174]

    В результате этого даже при большой скорости теплоносителя, движущегося внутри трубок. многоходового теплообменника, значение коэффициента теплопередачи к не является достаточно высоким. [c.218]

    В уравнении для определения коэффициента теплопередачи k необходимо правильно оценить влияние загрязнения (инкрустации) поверхности нагрева с учетом свойств теплоносителей. [c.228]

    Вязкость. Из таблиц, в которых указаны свойства воды, видно, что вязкость ее незначительна, особенно при высоких температурах. Незначительная вязкость воды также благоприятна для естественной циркуляции ее, так как коэффициент трения при расчете сопротивления в трубопроводе, пропорционален вязкости, а именно при ламинарном движении — первой степени вязкости, а при турбулентном движении в диапазоне Ке от 3 10 до 10 — четвертой степени. В разделе теплопередачи показано, что с понижением вязкости коэффициент теплопередачи увеличивается. Это обстоятельство также благоприятствует использованию воды в качестве теплоносителя. [c.290]

    При необходимости организации высокотемпературного обогрева при высоких коэффициентах теплопередачи иногда прибегают к использованию в качестве теплоносителей жидких металлов. [c.329]

    Интенсификация теплообменных процессов, в том числе и процессов выпаривания, обусловливает использование теплоносителя при более высоких температурах, чтобы повысить коэффициент теплопередачи и снизить удельную поверхность теплообмена. Для предотвращения термического разложения химических веществ при высоких температурах теплоносителей и предупреждения аварий процессы выпаривания термически нестабильных продуктов проводят под вакуумом. Проведение процесса под вакуумом требует высокой надежности системы. Важными условиями бесперебойной и безаварийной работы являются герметичность оборудования, глубина и постоянство вакуума. Падение вакуума или подсос воздуха в систему прн образовании взрывоопасных смесей и высоких температурах теплоносителя могут привести к перегревам, загораниям и взрывам продуктов. [c.142]

    Тщ—температура теплоносителя. и—линейная скорость. и—коэффициент теплопередачи. [c.18]

    Величина х для данного случая постоянна согласно принятым ранее допущениям о постоянстве коэффициента теплопередачи и расхода охлаждающего теплоносителя. [c.13]

    Изложенная методика определения Д ср справедлива при уело- ВИИ, что водяные эквиваленты обоих теплоносителей и коэффициент теплопередачи практически не меняются вдоль поверхности нагрева. Если это условие яе выполняется, то теплообменный аппарат необходимо рассчитывать по участкам, для которых эти величины можно принять постоянными (подробно см. [Л. 20]). [c.20]

    Среды, используемые для подвода или отвода тепла, называются соответственно теплоносителями и хладоагентами. В качестве теплоносителей могут быть применены нагретые газообразные, жидкие или твердые вещества. Дымовые газы как греющий теплоноситель обычно применяют непосредственно на установках, где сжигается топливо, так как их транспортирование на дальние расстояния затруднительно. Горячий воздух как теплоноситель также применяется для многих нефтехимических процессов. Существенным недостатком обогрева дымовыми газами и горячим воздухом является громоздкость теплообменной аппаратуры из-за свойственного им сравнительно низкого коэффициента теплопередачи. [c.253]

    Водяной пар как теплоноситель используется главным образом в насыщенном состоянии — как высокого давления, так и отработанный от паровых машин и насосов. Преимуществом насыщенного водяного пара является его высокая теплота конденсации, поэтому для передачи даже большого количества тепла требуется сравнительно немного теплоносителя. Высокие коэффициенты теплопередачи при конденсации водяного пара позволяют иметь относительно малые поверхности теплообмена. Кроме того, постоянство температуры конденсации облегчает эксплуатацию теплообменников. Недостатком водяного пара является значительный рост давления, связанный с повышением температуры насыщения, что ограничивает его применение конечной температурой нагрева вещества 200—215° С. При более высоких температурах требуется высокое давление пара, и тенлообменные аппараты становятся металлоемкими и дорогими. [c.253]


    Ориентировочные значения коэффициентов теплопередачи приведены в табл. 6.2, а коэффициентов теплоотдачи — в табл. 6.3. Средняя разность температур при прямотоке или противотоке теплоносителей равна [c.147]

    Коэффициенты теплопередачи, входящие в формулы (9.30) и (9.39), определяются частными коэффициентами теплоотдачи а от перемешиваемой среды к стенке и от стенки к теплоносителю, поступающему в рубашку или змеевик. [c.253]

    Подробный тепловой расчет газожидкостного реактора показан в примере 9.5. Поэтому здесь ограничимся рассмотрением вопросов, специфических только для кожухотрубчатых газлифтных реакторов, при следующих условиях в качестве теплоносителя в межтрубном пространстве принимаем кипящую воду через теплопередающую поверхность переходит тепловой поток Qp = 7,55-10 Вт коэффициенты теплопередачи имеют следующие значения через барботажную трубу Кг = 1300 Вт/(м"-К), через циркуляционную трубу Кц = 1000 Вт/(м -К). [c.288]

    Минимальное ориентировочное значение коэффициента теплопередачи, соответствующее турбулентному течению теплоносителей, равно (табл. П.1) /Сор = 800 Вт/(м -К). При этом ориентировочное значение поверхности теплообмена составит [c.32]

    В настоящее время известен ряд различных по конструкции аппаратов, предназначенных для проведения процессов неадиа-батическ ого противоточного массообмена. Для осуществления процессов абсорбции применяют ректификационную колонну, на тарелках которой размещают поверхности теплообмена, например в виде горизонтального змеевика. Последний, собранный с определенным.и зазорами между витками, может работать как провальная тарелка. Опыты, проведенные М. Э. Аэровым, Т. А. Быстровой, Е. П. Даровских и Л. Е. Сум-Шиком з показали, что при использовании воды в качестве теплоносителя коэффициент теплопередачи змеевиковой тарелки составляет в среднем 1390 вт - м - град- к. п. д. тарелок равен 0,6—0,8. Недостатком конструкции колонны с теплообменными тарелками являются малая поверхность теплопередачи в единице объема аппарата и сложность изготовления ввиду больщого числа соединений. [c.290]

    Коэффициенты теплопередачи подсчитаны для теплоносителей (пара и воды) в соответствии с приведенными формулами и сведены в таблицу данных для подбора ка.ториферов (табл. 5.10). Средняя температура теплоносителя  [c.202]

    Теперь поставим вопрос, как оценить величину Л. Прежде всего Q представляет собой скорость теплообмена, отнесенную к единице объема слоя, и потому /г имеет вид Ыр, где р — площадь поперечного сечения реактора, деленная на периметр охлаждающей поверхности (иногда эту величину называют гидравлическим радиусом), и к — коэффициент теплопередачи, отнесенный к единице охлаждающей поверхности. В рассматриваемой системе, очевидно, существуют три последовательных сопротивления теплопередаче от реагирующей смеси или зернистого слоя к стенке реактора, через стенку реактора и от стенкп к теплоносителю. Последнее сопротивление зависит от характеристик потока теплоносителя и может быть оценено стандартными методами, применяемыми при расчете теплообменников. Скорость теплопередачи через стенку определяется решением задачи теплопроводности. Для гомогенного реактора скорость теплопередачи от реагирующей смеси к стенке также оценивается стандартными методами, но для зернистого слоя вопрос более сложен. Эксперименты [c.272]

    Т f ш — исходная температура реагентов и теплоносителя, соответственно / = —АН1Ср и к связано с коэффициентом теплопередачи. [c.318]

    Пример 28. Требуется определить разность температур А/] между теплоносителем и стенкой при полной разности температур между теплоносителями, на-ходяшимися в тепловом взаимодействии, тО = 22,2° С, если коэффициент теплопередачи к = 440 ккал/м час °С, а коэффициент теплоотдачи на другой стороне аа = 3700 ккал1.м час °С. [c.162]

    Из примера ясно видно то огромное значение, какое имеет экономическая сторона дела. При проектировании теплообменника нельзя стремиться к чрезмерному увеличению коэффициента теплопередачи только за счет увеличения скорости теплоносителя, но следует также иметь в виду производственную экономию. При этом для экономического проектирования оборудования необходи- [c.173]

    Оребрение поверхности грубок предназначено для увеличения поверхности теплообмена со стороны теплоносителя, имеющего меньший коэффициент теплоотдачи. Ребристые трубки чаще всего применяются в воздухо- или газонагревателях, в воздухоохладителях и сушильных установках, реакторах и т. п. Применение их оправдано в случаях нагрева воздуха или газа горячей водой или паром, а также во всех других случаях, когда один из геплоноси-телей имеет большой, а другой — очень маленький по сравнению с первым коэффициент теплоотдачи, в результате чего получаются очень низкие значения коэффициента теплопередачи к и соответственно большие размеры поверхности нагрева. [c.199]

    При применении в спиральных теплообменниках в качестве одного из теплоносителей пара условия теплопередачи не являются столь благоприятными, как при теплообмене между двумя жидкостями. Так, например, при одинаковых производственных условиях, коэффициент теплопередачи спирального аппарата с паровым обогревом был получен равным 2500 ккал1м час°С, а в кожухотрубчатом аппарате коэффициент теплопередачи лежал в пределах 3500—4000 ккал/м час °С. [c.223]

    В качестве примеров математических моделей теплообменных аппаратов ниже проанализированы модели теплообменников простейших типов, в которых осуществляется передача тепла между двумя потоками — теплоносителем и хладоагентом. Во всех математических описаниях предполагается, что движение потоков теплоносителя и хладоагента характеризуется простейшими гидродинамическими моделями идеальное смешение и идеальное вытеснение . Кроме того, допускается, что коэффициент теплопередачи через стенку, разделяющую теплоноситель и хладоагеит, является постоянной заданной величиной, которая не зависит от их объемных расходов. Последнее допущение, строго говоря, неточно однако оно принято в дальнейшем для упрощения математических выкладок при решении задач оптимизации. [c.62]

    При постоянном тепловом потоке, характерном, например, для печей непосредственного нагрева, температура теплоносителя настолько высока, что на разность температур ДГ изменение температуры реагента не оказывает заметного влиянил, а коэффициент теплопередачи практически остается постоянным. Для интегрирования применяется тот же метод, что и в случае 3. [c.154]

    При поверочном расчете тепл о о бменно г о аппарата непрерывного действия чаще всего бывает необходимо определить конечные темиературы теплоносителей и и количество переданного тепла Q. В этом случае обычно бывают известны начальные температуры теплоносителей и величина поверхности нагрева Р, расходы теплоносителей О, и примерные значения их средних теплоемкостей с,, и с т и ориентировочное значение коэффициента теплопередачи к. [c.10]

    При одновременном изменении температур обоих теплоносителей во времени, а одного из них— и вдоль поверхности напрева расчет гораздо сложнее и в предположении постоянства во времени расхода охлаждающего теплоносителя при введении в расчет средних значений (по времени и вдоль поверхности теплообмена) коэффициента теплопередачи проводится на основании следующих зависимостей [Л. 18]. Уравнение теплового баланса [c.13]

    Компенсаторы теплового расширения. В отсутствие подобных устройств при повышенной разности температур трубок и корпуса возникает деформация мест развальцовки, нарушается герметичность и образуется течь. На рис. 161 представлены различные компенсирующие устройства. Лучшим способом считается применение плавающих головок в сочетании с отбортовкой кожуха при этом уменьшается живое сечение затрубаого пространства, повышаются скорость теплоносителя и коэффициент теплопередачи. В гудронных теплообменниках можно применять плавающую головку в сочетании с сальниковым уплотнением. [c.266]


Смотреть страницы где упоминается термин Теплоноситель коэффициент теплопередач: [c.252]    [c.200]    [c.282]    [c.98]    [c.15]    [c.201]    [c.295]    [c.12]    [c.12]    [c.264]    [c.145]   
Расчеты основных процессов и аппаратов нефтепереработки Изд.3 (1979) -- [ c.453 , c.454 ]




ПОИСК





Смотрите так же термины и статьи:

Коэффициент теплопередачи

Коэффициенты теплоносителей

Теплоноситель

Теплопередача



© 2025 chem21.info Реклама на сайте