Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основные критерии теплового подобия

    Основными критериями подобия, применяющимися в тепловых расчетах, являются следующие критерии. [c.333]

    Основные критерии теплового подобия. При переносе тепла сохраняет силу и уравнение Навье — Стокса, т. е. тепловое подобие требует геометрического и гидродинамического подобия. Уравнения переноса тепла потоком в направлении оси при стационарном режиме имеют вид [8, 9]  [c.137]


    Основные критерии теплового подобия [c.24]

    Структура критериев теплового подобия может быть получена из основного дифференциального уравнения конвективно-кондуктивного теплообмена (3.47а) методом почленного деления отдельных слагаемых уравнения, имеющих отмеченный ранее физический смысл. Вывод проще выполнить на базе одномерного уравнения (3.50), так как физический смысл слагаемых не зависит от числа и вида пространственных координат. Так, деление конвективного слагаемого на кондуктивное дает выражение, которое называют критерием Пекле. Смысл критерия Пекле - это мера отношения интенсивностей конвективного и кондуктивного переносов теплоты в потоке теплоносителя  [c.233]

    В процессе теплопередачи критерии Re, Рг и Gr являются определяющими тепловое подобие, а критерий Nu является определяемым, из которого находится значение коэффициента теплоотдачи а. Таким образом, расчет коэффициента и сводится в основном к определению критерия Нуссельта Nu в зависимости от соответствующих определяющих критериев (Re, Рг, Gr). [c.22]

    Еще ОДИН, очень часто используемый критерий теплового подобия, получается из анализа физических условий теплообмена теплоносителя и теплообменной поверхности. В гл. 1 отмечалось, что какова бы ни была степень турбулентности основного потока теплоносителя, в непосредственной близости от твердой поверхности вследствие ее демпфирующего влияния на турбулентные пульсации всегда имеется относительно тонкий пристенный слой, в пределах которого текучая среда потока перемещается вдоль стенки в ламинарном режиме. Существенно, что при ламинарном течении конвективный перенос теплоты имеет место только вдоль направления движения, а в поперечном направлении, т. е. нормально к стенке, теплота может распространяться лишь за счет механизма теплопроводности (рис. 3.10). Таким образом, теплота, которой обмениваются основной поток теплоносителя и теплообменная поверхность (стенка), в общем случае выражаемая уравнением теплоотдачи (3.6), поперек пристенного слоя в конечном счете передается только за счет механизма теплопроводности  [c.234]

    Общность дифференциальных уравнений конвективного теплообмена и массопередачи позволяет считать, что основные критерии подобия диффузионных процессов должны иметь одинаковый вид с критериями подобия тепловых процессов. В этом нетрудно убедиться, если рассматривать условия перехода на границе раздела фаз массы компонента, распределяемого между фазами, и вывести из этих условий критерии диффузионного подобия. [c.464]


    До недавнего времени анализ работы химических реакторов не выходил за пределы алгебраических расчетов материальных и тепловых потоков, проводимых без учета макрокинетики химических процессов, а временные характеристики, необходимые для управления процессом, совсем не учитывались. Вопросы оптимизации процессов химической технологии практически не рассматривались. Основным методом расчета таких процессов был метод теории подобия, сводившей дифференциальные уравнения процесса к соответствующему набору безразмерных комплексов физических величин (критериев подобия), нахождение связи между которыми и составляло основную задачу получения расчетных формул. Этот прием, оправдавший себя для детерминированных однозначно протекающих физических процессов в однофазных системах со строго фиксированными границами, позволил получить расчетные уравнения для ряда инженерных задач гидродинамики, теплообмена и в меньшей степени для массообмена, но оказался недостаточным для двухфазных систем и процессов, осложненных химическими реакциями. В последнем случае из-за несовместимости критериев [c.5]

    В качестве переменных гидродинамического, теплового и химического подобия можно выбрать безразмерные величины из табл. 8-10, причем выражения, приведенные в первых трех ее столбцах, указывают также на число степеней свободы. Свойства вещества для потоков компонента, теплоты (энтальпии) и импульса (количества движения) р, Ср, к, т], а, р, V, АЯ в модели и промышленном аппарате должны быть одинаковыми. В этом случае равенство независимых безразмерных величин для них в соответствии с определением (7-6) указать легче. В целях дальнейшего упрощения можно пренебречь перепадом давления Ар, так как он часто бывает сравнительно небольшим. При этом число основных переменных в последней строке табл. 8-10 уменьшится на единицу вследствие того, что А и We 0. Упрощается и равенство критериев Ке  [c.230]

    Большая часть имеющихся в настоящее время данных, лежащих в основе всех методов расчета процессов переноса вещества, получена именно методом моделирования диффузии теплопередачей. Процессы теплопередачи широко изучались в течение длительного времени, и в этой области накоплен обширный материал, обобщенный методом теории подобия. В литературе по теплопередаче мы можем найти готовые формулы зависимости критериев Нуссельта или Маргулиса от критериев Рейнольдса и Прандтля для любых типичных геометрических условий. Достаточно подставить в эти формулы значение диффузионного критерия Прандтля вместо теплового, чтобы сразу получить основные расчетные формулы для расчета конвективной диффузии. [c.367]

    Вследствие этого в исследовании тепловых и гидравлических характеристик в пластинчатых и спиральных аппаратах основное место занимает эксперимент с получением расчетных уравнений в форме связи между критериями подобия. [c.128]

    В этом случае должны быть соблюдены все условия подобия геометрическое, равенство в сходственных точках критериев подобия гидромеханического, теплового, диффузионного и химического при условии подобия условий однозначности. Если в системе основная реакция не сопровождается реакциями побочными и последующими, то должно быть сохранено подобие температурных полей. При наличии побочных реакций необходимо соблюдать равенство температур в сходственных точках модели и натуры Т = Тг. Теплоты реакции в обоих случаях одинаковы = дг. [c.158]

    Для определения основных размеров химических реакторов необходимо иметь полное математическое описание (полную знаковую модель) в виде системы дифференциальных уравнений материальных балансов для компонентов реакционной смеси и дифференциального уравнения теплового баланса, учитывающих гидродинамическую структуру потока, а также кинетические уравнения теплообмена, массообмена и химических реакций. Вследствие сложности математического описания [16, 54] математическое моделирование большинства нефтехимических объектов проводят, применяя упрощающие допущения. С другой стороны, полное физическое моделирование работы реакторов с целью использования данных, полученных на лабораторной модели для проектирования промышленного реактора, практически невозможно из-за необходимости обеспечения одновременного равенства большого числа критериев гидродинамического, теплового, массообменного и химического подобия. Последнее требование оказывается невыполнимым вследствие несовместимости некоторых критериев подобия. [c.167]

    Мы познакомились с основными зависимостями, относящимися к скорости жидкости, которая стекает тонкими слоями по вертикальной стенке. Часто по тепловым соображениям становится необходимым получить течение жидкости в слое определенной толщины. Основываясь на известных зависимостях, а также зная удельный вес и вязкость жидкости, вычислим, используя уравнение (2-95), необходимый объемный расход жидкости. В этом случае вязкость имеет большое влияние. Чем больше будет вязкость жидкости, тем меньший объемный расход даст определенную толщину пленки. В этом случае критерием подобия движения является число Рейнольдса, выраженное с помощью эквивалентного [c.92]


    Вольт-амперные характеристики и тепловой КПД . На основе анализа уравнений, описывающих физические процессы в дугах плазмотронов, а также с помощью теории подобия и размерностей была разработана система критериев, определяющих основные характеристики плазмотронов и позволяющих моделировать эти генераторы плазмы в соответствии с требованиями данного технологического процесса. Так, для однокамерного плазмотрона прямой полярности (выходной электрод—анод) уравнение вольт-амперной характеристики воздушной дуги постоянного тока в критериальной форме имеет следующий вид [6]  [c.10]

    Как при периодическом, так и при непрерывном смешении при переходе от лабораторной или полупроизводственной установки к промышленной для получения того же качества смешения по статистическому критерию ulh) = onst необхо димо обеспечить кинематическое, динамическое и тепловое подобие процессов. Из анализа уравнения (4.11) и реологических соображений следует [27], что при таком моделировании основные параметры РСНД следую- [c.169]

    Диффузионное распространение пламени. Если химические и физические процессы, происходящие во многих (з частности, в воздушных) пламенах, таковы, что справедливость основных положений тепловой теории применительно к этим пламенам не вызывает сомнений, то, по-видимому, можно указать также и такие пламена, к которым эта теория заведомо неприменима. Выполнимость условия подобия поля температур и поля концентраций нужно рассматривать как наиболее общий критерий при менимости тепловой теории распространения пламени. Все формулировавшиеся различными авторами условия, определяющие возможность теплового механизма распространения пламени, в конечном итоге сводятся к этому критерию. Так, например, Бартоломе [347, 348, 1097] полагает, что тепловой механизм не осуществляется в горячих пламенах (температура выше 2500° К), где вследствие высокой степени диссоциации значительная часть освобождающейся в результате реакции энергии имеет форму химической энергии свободных атомов и радикалов, диффузия которых из зоны горения в свежую смесь, опережающая иодвод тепла, и является основной причиной распространения пламени. При этом Бартоломе исходит из того факта, что скорости распространения пламени в воздушных смесях, которые горят при температурах ниже 2400° К, обычно равны 30—70 см сек, в то время как скорости горения кислородных смесей (Г,. = 2700° К) составляют 400—1200 см сек. Ввиду того, что при температуре кислордиого пламени газ заметно диссоциирован, естественно возникает представление о связи между величиной Ыо и боль шой концентрацией атомов и радикалов — продуктов диссоциации горячего газа. По Бартоломе, в основе механизма распространения таких пламен лежит диффузия атомов (преимущественно атомов водорода) в холодную смесь, причем он полагает, что главная роль атомов заключается в их рекомбинации, которая сопровождается выделением больших порций тепла и которая, таким образом, способствует передаче тепла от горячего холодному газу 4 [c.616]

    Установленная выше общность диференциальных уравнений конвективного теплообмена и диффузии позволяет считать, что1 основные критерии подобия диффузионных процессов также должны иметь одинаковый вид с критериями подобия тепловых процессов. В этом нетрудно убедиться, если рассмотреть условия поглощения вещества на границе раздела фаз и вывести из этих уравнений критерий подобия. [c.464]

    При соблюдении теплового подобия создаются худшие условия отвода тепла в натуре сравнительно с моделью. Это следует из рассмотрения критериев Оа , (8.23а) и (8.22а). Из первого следует, что доля теплоты реакции, приходящаяся на кондуктивный теплоотвод, пропорциональна квадрату радиуса реактора/ , в то время как конвективно отводится доля тепла реакции, пропорциональная первой степени лннейного размера. В основном тепло реакции отводится кондукцией, направленной поперек газового потока. Осуществление подобных условий теплообмена приводит к требованию (8.78), выполнение которого резко уменьшает границы возможных изменений масштаба кд. В самом деле, зависимость констант скоростей реакции от температур выражается уравнением Аррениуса (8.9) [c.159]

    Следует иметь полную систему безразмерных переменных хотя бы в форме, соответствующей использованию для обработки данных теории групп. Они приводятся в табл. 8-10 в порядке, предложенном Ван Кревеленом [7]. В изображенной ниже схеме первая строка содержит независимые безразмерные основные переменные (критерий подобия), определяющие число степеней свободы потока компонентов, вторая — число степеней свободы для теплового потока и третья — для потока импульса. Эти значения расположены сначала в общем виде, а затем по различным конкретным числовым значениям Р ". [c.117]

    Основные научные работы посвящены тгоретическим аспектам химической технологии. Развил (1950-е) теорию массопередачи, ввел новые критерии подобия с учетом турбулентного переноса и представлений о факторе динамического состояния поверхности. Рассмотрел вопрос о моделировании гидродинамических, тепловых и диффузионных процессов в химических реакторах на основе теории подобия и показал (1963) недостаточность этой теории для моделирования химических процессов. Обосновал (1960—1970) системные принципы математического моделирования химических процессов. Открыл явление скачкообразного увеличения тепло- и массообмена при инверсии фаз. Автор учебников и монографий— Основы массопередачи (3-е изд. 1979), Методы кибернетики в химии и химической технологии (3-е изд. 1976), Введение в инженерные расчеты реакторов с неподвижным слоем катализатора (1969) и др. [c.227]


Смотреть главы в:

Расчеты и исследования химических процессов нефтепереработки -> Основные критерии теплового подобия




ПОИСК





Смотрите так же термины и статьи:

Критерии подобия

Критерий основной



© 2025 chem21.info Реклама на сайте