Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дисперсность нефтяного углерода

    Для нефтяных связнодисперсных систем, к которым относятся пористые тела (углеродный адсорбент, нефтяной углерод), М. М. Дубининым [12] предложена следующая классификация 1юр по дисперсности микропоры (до 2 нм), мезопоры (от 2 до 200 нм) и макропоры (выше 200 нм). [c.12]

    ДИСПЕРСНОСТЬ НЕФТЯНОГО УГЛЕРОДА [c.145]

    ФИЗИКО-ХИМИЧЕСКАЯ МЕХАНИКА НЕФТЯНЫХ ДИСПЕРСНЫХ СИСТЕМ И ИХ ИСПОЛЬЗОВАНИЕ В ПРОЦЕССЕ ПРОИЗВОДСТВА НЕФТЯНОГО УГЛЕРОДА [c.11]


    Нефтяной углерод, обладая специфическими свойствами (различной степенью дисперсности, адсорбционной и химической активностью, высокой степенью чистоты и др.), является широко распространенным продуктом, используемым в качестве наполнителя в углеродонаполненных системах (УНС) и реагента (чаще восстановителя) в различных химико-технологических процессах. [c.79]

    Углеродонаполненные системы состоят из наполнителя и связующего. Наполнители представляют собой нефтяной углерод в дисперсном состоянии. Связующие вещества скрепляют частицы наполнителя друг с другом в единый монолит. [c.79]

    В качестве наполнителей УНС используют нефтяные углероды в коллоидно-дисперсном или грубодисперсном состоянии, изотропной и анизотропной структуры, с низким и высоким содержанием серы трудно и легко графитирующиеся, с низкой и высокой адсорбционной и реакционной способностью и т. д. Общим для углеродных наполнителей является достаточно развитая их поверхность и определенная адсорбционная ее активность. [c.80]

    По степени дисперсности углеродные компоненты наполнителя делят на коллоидно- и грубодисперсные системы. Коллоиднодисперсные системы обладают наиболее высокой удельной поверхностью благодаря малым размерам частиц (10—10 А). Малые размеры частиц и большая их удельная поверхность (20—. 300 м /см ) обеспечиваются специальными методами получения нефтяного углерода из газообразного и жидкого сырья при высоких температурах в газовой фазе. К таким нефтяным углеродам относят сажу. По принятому в нашей стране стандарту (ГОСТ 7885—77), сажи в зависимости от их влияния на прочностные свойства и износостойкость резины существенно различаются по активности. [c.80]

    В книге изложены научные и технологические основы производства и облагораживания нефтяного углерода (кокс, сажа, углеродистое волокно, пеки) и описаны его физико-химические свойства. Обобщены результаты исследований по физико-химической механике нефтяных дисперсных систем — источника получения нефтяного углерода. Рассмотрены меж-молекулярные взаимодействия структурирующихся компонентов нефти, принципы регулирования структурно-механической прочности, устойчивости и размеров сложных структурных гдиниц, существенно влияющие на ход технологических процессов и на качество получаемого углерода. [c.2]


    Виды нефтяного углерода различаются соотношением количеств дисперсной фазы и дисперсионной среды, величиной внутренней поверхности кристаллитов, отношением в них упорядоченной части к неупорядоченной, типом и прочностью связей в боковых цепях сложных структурных единиц, что в конечном счете обусловливает объемную- и поверхностную активность углерода. [c.7]

    К наиболее распространенным методам подготовки сырья для производства нефтяного углерода относятся термоконденсация и термополимеризация. Деструктивные методы позволяют одновременно увеличивать отношение дисперсной фазы к дисперсионной среде и изменять молекулярную структуру компонентов сырья, что весьма важно для получения нефтяного углерода специального качества. При деструктивной переработке происходит непрерывное и необратимое изменение состава и качества дисперсной фазы и дисперсионной среды, в конечном счете завершающейся формированием продуктов более низкой и более высокой молекулярной массы, чем у исходного сырья. [c.7]

    Вязкость нефтяных остатков при высоких температурах изменяется по сложной зависимости по мере увеличения концентрации дисперсной фазы она непрерывно возрастает. Только при замедлении скорости перехода системы из аномального жидкого состояния в твердое до оптимального ее значения, когда вязкость обеспечит диффузию молекул к центрам кристаллизации, возможен рост крупных кристаллов. При одних и тех же условиях (получения нефтяного углерода соответствие между указанными скоростями и ростом кристаллов создается подбором сырья определенной молекулярной структуры (крекинг-остатки дистиллятного происхождения, ароматические концентраты). В температурном интервале перехода системы из состояния с критическим напряжением сдвига предельно разрушенной структуры Рг к состоянию с критическим напряжением сдвига необратимо твердеющей системы Рд возможен, интенсивный рост кристаллов углерода с анизотропными свойствами. Величина температурного интервала зависит от температуры процесса перехода. При высоких температурах этот интервал минимален, что существенно ограничивает рост кристаллов. Он минимален также при использовании сырья, со- [c.47]

    Таким образом, изучение условий формирования надмолекулярных структур, необратимости перехода из жидкого в твердое состояние нефтяной дисперсной системы дают ценную информацию о структурно-механической прочности и устойчивости этой системы, позволяют регулировать размер и упорядоченность кристаллов, научно обоснованно подбирать сырье и получать нефтяной углерод преимущественно с анизотропными или изотропными свойствами. В соответствии с новыми представлениями нефтяное сырье для технологических процессов и товарные нефтепродукты, получаемые при смешении нефтяных компонентов, должны в общем случае удовлетворять двум требованиям  [c.48]

    Переработка нефти, начиная с первых стадий (деэмульсация, прямая перегонка) и кончая переработкой нефтяных остатков (коксование, гидрокрекинг, добен—деасфальтизация остатков бензином и др.), основана на регулировании структурно-механической прочности и устойчивости нефтяных дисперсных систем. К дисперсным системам относится и нефтяной углерод, состоящий из сложных структурных единиц—кристаллитов, разных по размеру и степени упорядоченности и механической прочности (дисперсная фаза) и дисперсионной среды (газ-1-жидкость). [c.7]

    Нефтяной углерод может быть вязкотекучим (пеки) или твердым (коксы, сажа, углеродистые волокна) веществом. На основе результатов рентгеноструктурных, спектральных и химических анализов установлено, что нефтяной углерод состоит из свободнодис-нерсных ассоциатов и кристаллитов (дисперсная фаза пеков) или связаинодисиерсных кристаллитов (твердые виды углерода) различных размеров и упорядоченности, что определяет его физикохимические свойства и направление использования. [c.18]

    В связи с тем, что многие свойства коксов (пористость, плотность, механические и электрические свойства и т. д.) подробно описаны в работе [112], здесь уделено внимание свойствам нефтяных углеродов, изложенных в литературе недостаточно подробно или же неупоминаемых в ней вообще. К ним относятся элементный состав, содержание сернистых соединений, реакционная п адсорбционная способность, устойчивость и структурно-механическая прочность нефтяных дисперсных систем и кристаллитная структура углерода. [c.116]

    Нефтяной углерод — один из ярких примеров полигетеро-фа ной НДС — характеризуется наличием дисперсной фазы в твердом и газообразном состояниях. [c.9]


    При эволюции ПС могут образоваться, как минимум, два вида карбенов, если последние рассматривать как ПС с выродившимися сольватными оболочками за счет полимеризационного перехода из нее в ядро молекул асфальтенов. Первый вид - это анизотропный карбен (рис. 1.16), который получается, когда ПС образована голоядерными структурами. В отсутствие длинных алкильных заместителей асфальтены в ядре будут связываться за счет спин-спинового и я-взаимодействия, что способствует росту ядра в направлении оси "С" графитовой структуры. Утонение сольватной оболочки до слоя диамагнитных молекул соответствует моменту образования карбенов, коллективное состояние которых может быть отнесено к так называемым полимерным жидким кристаллам, которые в последнее время обнаружены и интенсивно исследуются [51,52]. Различие в размерах карбенов и их молекулярном весе не может препятствовать образованию мезофазы. Такая возможность показана в работе [53]. Образование вторичной мезофазы в нефтяных дисперсных системах обнаружено в работе [54] при термолизе. Такие карбены приводят к образованию волокнистого нефтяного углерода, как это, например, показано в работе [c.45]

    Исходная дисперсность НДС обусловлена склонностью к повышенным межмолекулярным взаимодействиям нефтяных компонентов, в первую очередь, полициклических аренов и гетероорганических соединений, особенно САВ. Достоверно установлено, что к НДС относятся практически все виды природного углеводородного сырья, а также разные типы нефтепродуктов — от моторных топлив до коксов. Следует отметить и изменения самих НДС как объектов исследований из-за исчерпания относительно легко доступных нефтяных и газовых запасов больше внимания уделяется добыче и переработке тяжелых высоковязких нефтей и природных битумов, составляющих большую часть мировых запасов углеводородного сырья. В отличие от обычных нефтей и газоконденсатов, представляющих собой мало-и среднеконцентрированные дисперсные системы, высоковязкие нефти и природные битумы являются высококонцентрированными дисперсными системами. Существенные особенности имеют НДС деструктивного техногенного происхождения (тяжелые продукты деструктивной переработки нефти и разновидности нефтяного углерода), они отличаются от НДС нативного происхождения не только по способам получения, но и по компонентному составу, строению и свойствам [3]. [c.173]

    Таким образом, весь путь эволюционного перехода от нефти и углеводородных газов к углероду как к целевому продукту можно разделить на два участка - неуправляемой и управляемой карбонизации. Очевидно, условия и особенности развития сложных многокомпонентных систем на неуправляемом участке цепи химико-технологических процессов (ХТП), с помощью которых осуществляется эволюционный переход, оказывают существенное влияние на качество и условия формирования нефтяного углерода на управляемом участке перехода. В опосредованной форме это влияние проявляется через качество сырья, входящего в управляемый участок цепи ХТП и определяющего его состав, структуру и условия функционирования. Исторически сложилось так, что технология промышленного производства нефтяного углерода основывается на принципе приведения его в соответствие со сложившимися составом и структурой предприятий нефтехимпереработки и прежде всего с неуправляемой, с точки зрения карбонизации,частью цепи ХТП как поставщика нефтеуглеродного сырья. Хотя в принципе эволюционный переход от нефти и газа к углероду может быть реализован в полностью управляемой,с точки зрения формирования углерода заданного качества, цепи ХТП действие отмеченного выше принципа, очевидно, неустранимо и будет иметь место в течение весьма длительного периода. Поэтому важно более активно и полно использовать потенциал процессов "неуправляемого" участка эволюционного пути в аспекте повышения эффективности и интенсивности процессов формирования нефтяного углерода с заданным составом, структурой и свойствами. Существенным становится увеличение выхода нефтяного углерода на стадии его непосредственного пол чения как конечного продукта, Всё это требует накопления, анализа и обобщения данных по составу, структуре, дисперсности, свойствам, условиям и особенностям технологии формирования сложных многокомпонентных систем на всём пути эволюционного перехода от нефти и газа к углероду. В этом аспекте особо важны результаты исследования процессов раздельной и совместной карбонизации различных видов нефтеуглеродного сырья с использованием различ- [c.7]

    Формирование каждого углеродного материала на той или иной стадии сопровождается процессами разрушения и образования дисперсных систем. Поэтому технология производства нефтяного углерода является объектом коллоидной химии, особенно физико-химической механики. Отличительной особенностью СВДС, формирующихся в процессе производства нефтяного углерода, является многокомпонентность, чрезвычайная сложность и недостаточная изученность состава и молекулярной структуры (особенно ВМС), претерпевающих непрерывное изменение в направлении возрастающей карбонизации и ароматизации, сопровождающееся сложными изменениями ММР компонентов, интенсивности и характера их ММВ. Таким образом, в процессах формирования нефтяного [c.107]

    Дисперсная фаза структурированных НДС в ядерной части на определенном этапе представлена газопаровыми пузырьками, капельками изотропной и анизотропной жидкости, кристаллами, ассоциатами и комплексами асфальтосмолистых веществ и других ВМС, кристаллитами углерода. Во многих случаях эти виды ДФ могут находиться в структурированных НДС одновременно. При этом следу ст подчеркнуть, что частицы ДФ данного вида, находящиеся в конденсированном состоянии, могут бьггь представлены органическими соединениями различных классов или относящимися только к одному классу, гомологическому ряду или группе. Так, кристаллическое ядро ДФ может быть образовано парафиновыми, ароматическими или смешанными углеводородами в таких системах как нефть, дистиллятные и остаточные продукты переработки нефти и газа, битумы и пеки, находящиеся при температурах, более низких, чем температура их застывания или стеклования, или сетчатыми ароматическими макромолекулами в графите. Состав, структура, размеры, объемные и поверхностные свойства ядерной части частиц ДФ, конкретный набор и концентрация различных видов ДФ в данной структурированной НДС в процессах получения нефтяного углерода определяются многими факторами природа сырья, температурно-временной режим и давление карбонизации, среда, степень превращения сырья, технологические и аппаратурные особенности процесса, тип и интенсивность внешних энергетических воздействий и т.д. [c.108]

    Многообразие органических соединений нефтей и направлений их химических превращений в процессах химико-технологической переработки обусловливает множественность нефтяного углерода по составу, структуре, дисперсности и свойствам. Эго является предпосылкой возможносш создания и организации производства практически неограниченного числа различных углеродных материалов путем варьирования химическим составом исходного органического материала, технологией и условиями его подготовки и переработки в углерод. [c.113]

    В промышленных условиях чаще всего недеструктивные методы служат дополнением к деструктивным методам иодготовки сырья для производства нефтяного углерода. Например, путем термоконденсации подготавливают дистиллятное сырье — концентрат полициклических ароматических углеводородов и более тяжелых компонентов определенной молекулярной структуры, а затем путем экстракции, адсорбции, испарения и других методов отделяют дисперсную фазу от дисперсионной среды. Недеструктивными методами можно получить нефтяной углерод, используя и тяжелую часть дисперсионной среды, и дисперсную фазу. [c.8]


Смотреть страницы где упоминается термин Дисперсность нефтяного углерода: [c.7]    [c.8]    [c.14]    [c.84]    [c.174]    [c.49]    [c.176]    [c.60]    [c.2]    [c.2]   
Смотреть главы в:

Нефтяной углерод -> Дисперсность нефтяного углерода

Нефтяной углерод -> Дисперсность нефтяного углерода

Нефтяной углерод -> Дисперсность нефтяного углерода




ПОИСК







© 2025 chem21.info Реклама на сайте