Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Волокна как наполнители углеродные

    Представляет интерес использование для деталей насосов конструкционных пластиков, содержащих в качестве наполнителя неориентированные углеродные волокна, так называемые углепластики. От других пластмасс конструкционного назначения углепластики отличаются низкой плотностью, высоким модулем упругости, высокой усталостной прочностью, термостойкостью, низким коэффициентом трения, высокой износостойкостью, стой- [c.40]


    К числу современных пластмасс относятся так называемые армированные пластики. В армированных пластиках в качестве наполнителя используют различные волокна. Волокна в составе пластмассы несут основную механическую нагрузку. Органопластики — пластмассы, в которых связующим являются синтетические смолы, а наполнителем — органические полимерные волокна. Их широко применяют для изготовления деталей и аппаратуры, работающих на растяжение, средств индивидуальной защиты и др. В стеклопластиках армирующим компонентом является стеклянное волокно. Стекловолокно придает стеклопластикам особую прочность. Они в 3—4 раза легче стали, но не уступают ей по прочности, что позволяет с успехом заменять ими как металл, так и дерево. Из стеклопластиков, например, изготовляют трубы, выдерживающие большое гидравлическое давление и не подвергающиеся коррозии. Материал является немагнитным и диэлектриком. В качестве связующих при изготовлении стеклопластиков применяют ненасыщенные полиэфирные и другие смолы. Стеклопластики широко используются в строительстве, судостроении, при изготовлении и ремонте автомобилей и других средств транспорта, быту, при изготовлении спортинвентаря и др. По сравнению со стеклопластиками углепластики (п.ласт-массы на основе углеродных волокон) хорошо проводят электрический ток, в 1,4 раза легче, прочнее и обладают большей упругостью. Они имеют практически нулевой коэффициент линейного расширения по цвету — черные. Они применяются в элементах космической техники, ракетостроении, авиации, наземном транспорте, при изготовлении спортинвентаря и др. [c.650]

    При создании материалов, работающих в условиях высоких температур и больших динамических нагрузок, целесообразно использовать в качестве наполнителя углеродные волокна или их филаменты, обеспечивающие существенное упрочнение композиции и более равномерное распределение компонентов шихты [1—3]. В качестве связующих целесообразно использовать термореактивные полимеры фуранового ряда, имеющие высокую термическую и химическую стойкость и большой пиролитический остаток 1[4, 5]. При изготовлении композиций из термореактивных смол с порошкообразными наполнителями смолу обычно растворяют в органическом растворителе и в раствор вводят катализатор отверждения ионного типа. После удаления растворителя, например ацетона, образующуюся твердую массу дробят и формуют. В случае использования углеродных фила-ментов применение ацетонового раствора полимера нежелательно из-за неизбежного разрушения филаментов при дроблении твердой массы. [c.206]


    Для улучшения свойств АПМ армируют жесткими и прочными наполнителями — углеродными или металлическими волокнами, тканями, лентами, шнурами, коксом. Содержание наполнителей в этих случаях может возрастать до 20-50 % для литьевых марок и 60-98 % для прессовочных. У таких материалов повышается теплопроводность, стабилизируются свойства в функции температуры [20]. [c.166]

    Высокую теплостойкость и термостабильность придают в качестве наполнителя углеродные волокна. [c.184]

    В роли теплостойких наполнителей для армированных пластмасс хорошо себя зарекомендовали углеродные волокна или углеродные ткани. Основным сырьем для производства углеродных волокон в США является вискоза, а в Японии и Англии — акриловые волокна. Процесс производства углеродных волокон состоит из предварительного окисления (придания исходному волокну огнестойкости) при температуре 200—300° С и карбонизации при температуре выше 800° С. Полученные таким образом углеродные волокна обладают достаточной гибкостью. Размер по диаметру волокон составляет 8—10 мкм, прочность при разрыве достигает 100—120 кгс/мм . [c.43]

    В качестве основы (матрицы) используются металлы и сплавы, полимеры, керамика. Они обеспечивают связь между составляющими компонентами, прочность и пластичность под действием нагрузок. Значительно разнообразнее применяемые наполнители, особенно для композитов на основе пластмасс, от которых зависит прочность и жесткость композитов. Из наполнителей следует выделить металлические и углеродные волокна, дисперсные тугоплавкие металлы с размером частиц от 0,01 до 0,06 мкм, нитевидные кристаллы карбида и нитрида кремния. Созданы также упрочняющие нити и волокна с нанесенными барьерными слоями карбид бора — бор на вольфраме, карбид бора на боре, углеродные волокна, покрытые карбидом кремния, бором, бор на оксиде кремния (IV) и т. д. [c.177]

    Таким образом, при взаимодействии наноструктурных волокнистых наполнителей с полимерными связующими благодаря высокой адгезионной способности волокон происходило их смачивание, заполнение пор и межволоконных каналов жидкими смолами, которые в процессе пиролиза превращались в углеродный пек. Последний при нагревании взаимодействовал с волокнами, образуя индивидуальные оксикарбиды металлов, а выше 1900 С формировался твердый раствор оксикарбидов циркония и гафния кубической структ ы. [c.196]

    ГРАФИТОПЛАСТЫ, композиц. материалы на основе углеграфитовых наполнителей и полимерных связующих. Наполнителями служат графиты (природный, тигельный, коллоидный) в кол-ве 5-15% по массе, обычно в сочетании (20-80%) с искусственными углеродными или графитиро-ванными материалами (измельченными отходами электродного произ-ва), коксом, термоантрацитом, стеклянными или углеродными волокнами, металлич. порошками [c.609]

    НИИ. Особый случай представляет собой наполнение углеродными волокнами, поскольку сам наполнитель является проводником. Электрические свойства полиамидных композиций, наполненных углеродными волокнами, зависят от вида, содержания и ориентации наполнителя. [c.162]

    С недавнего времени для изготовления изделий, работающих под нагрузкой, в промышленном масштабе начали выпускаться полиамиды, наполненные углеродными волокнами. При равном содержании наполнителя жесткость полимеров, наполненных углеродными волокнами, значительно выше, а масса изделий из таких композиций гораздо меньше, чем полимеров, усиленных стеклянным волокном. Новые материалы с успехом применяют в космической технике. [c.170]

    Отработана технология пропитки наполнителя пековым связующим. В качестве наполнителя использовались углеродное волокно и углеродная ткань. Из полученных препрегов методом горячего прессования изготовлялись образцы КМ, которые после нескольких циклов пропитка — карбонизация были испытаны физико-механические и тенлофизические свойства. [c.106]

    В зависимости от природы наполнителя различают след, виды A.n. стеклопластики (наполнитель-стеклянное волокно), боропластики (борное волокно), асбопластики (асбестовое волокно), углепластики (углеродное волокно), древесные слоистые пластики (древесный шпон) и др. А. п. с наполнителями в виде коротких волокон наз. волокнита-ми, в виде т .г.не -текстолитами, в виде бумаги - гешг дк-сами. По характеру ориентации волокон различают однонаправленно, перекрестно и пространственно армированные пластики. [c.197]

    Политетрафторэтилен (— СГг — СГз —) испохгьзуется в смесях с углеродными волокнами, сажей, графитом, дисульфидом молибдена [2-121], а также металлическими порошками, в частности медным [2-122], для применения в качестве антифрикционных материалов. Однако в данном случае его следу т рассматривать не как связующее, а как наполненный углеродными порошками полимер. В этом случае указанные наполнители, несколько повышая его коэффициент трения, улучшают его износоустойчивость и механические свойства. [c.134]

    В зависимости от природы наполнителя различают собственно ВОЛОКНИТЫ, наполнителем для к-рых служит целлюлозное, гл. обр. хлопковое, волокно асбоволокииты (наполнитель-асбестовое волокно см. Асбопластики) стекло-волокниты (наполнитель-стекловолокно) органоволок-ниты (наполнитель-синтетич. волокно) углеродоволок-ниты (наполнитель - углеродное волокно). В кач-ве связующего для В. применяют чаще всего феноло-формальд., анилино-феноло-формальд. и эпоксидные смолы, кремнийорг. полимеры. Содержание связующего 30-45% по массе. [c.416]


    Армирующие наполнители воспринимают осн. долю нагрузки К. м. По структуре наполнителя К. м. подразделяют на волокнистые (армированы волокнами и нитевидными кристаллами), слоистые (армированы пленками, пластинками, слоистыми наполнителями), дисперсноармированные, или дисперсноупрочненные (с наполнителем в виде тонкодисперсных частиц). Матрица в К.м. обеспечивает монолитность материала, передачу и распределение напряжения в наполнителе, определяет тепло-, влаго-, огне- и хим. стойкость. По природе матричного материала различают полимерные, металлич., углеродные, керамич. и др. композиты. Подробнее о ф-ции матрицы и армирующего наполнителя, а также о технологии получения волокнистых полимерных К. м. см. Армированные пластики. [c.443]

    УГЛЕПЛАСТИКИ (ушепласты, углеродопласты), композиционные, гл. обр. полимерные, материалы, армированные на-полни-гелями из углеродных волокон. Связующее (матрица) в У.- преим. термореактивные синтетич. смолы (эпоксидные, фенольные, полиэфирные, полиимицные и др.), термопласты (полиамиды, поликарбонаты, полисульфоны, полиэфиры и др.). Наполнители - углеродные нити, жгуты, ленты, ткани, маты, короткие рубленые волокна. Материалы на основе углеродных волокон и углеродной матрицы наз. углерод-углерад-ными материалами. [c.25]

    Наполнителями Э. к. служат порошки (ttanp., окись алюминия, сажа, кремнезем, алюминиевый, никелевый порошки), ткани из стеклянных и синтеи ч. волокон, волокна (стеклянное, углеродное и др.). В зависимости от природы нанолнителей их количество составляет 50—300%) от массы сухой смолы. Нек-рые 1[аполнители (наир., окись ванадия, бериллия или цинка) могут действовать как отвердители и стабилиза-оры термо-окисл11тсл1>иой деструкции. [c.492]

    В качестве наполнителей могут быть использованы как порошкообразные материалы - гидроксиапатит, различные силикатные материалы, так и волокнообразные наполнители - углеродные волокна, полученные пиролизом полиакрилонитрила, и волокна на основе поли-п-фенилентерефталамида. [c.295]

    Наиболее ценным наполнителем огнестойких смесей с точки зрения всех перечисленных выше пяти факторов является асбесто вое волокно. Асбест отлично снижает текучесть битума в широком температурном диапазоне, образует скелетную структуру, которая связывает другие наполнители и углеродные остаточные компоненты, характеризуется эндотермической потерей связанной воды в широком температурном диапазоне, начиная приблизительно с 315 °С. По последнему свойству асбест уникален, так как эндотермическая потеря воды происходит постепенно, с увеличением температуры, в то время как другие наполнители, способные выделять двуокись углерода, эффективны только при несколько брлее высокой температуре, требующейся для конверсии. [c.201]

    Особенно широкое применение полу-чили углеродные волокна в качестве наполнителя в технологии композиционных материалов, имеюпщх весьма широкий диапазон использования - от космических спутников, ракет, корпусов глубоководных аппаратов, деталей самолетов, автомобилей, лопаток газовых турбин, винтов вертолетов до высококачественных скрипок, спортивного инвентаря и протезов. В последние годы разрабатывается технология получения углеродных волокон (УВ) с развитой системой микропор и спеп [фической сорбционной активностью. Такие волокна могут быть использованы в качестве фршьтров, работающих при небольшом гидравлическом сопротивлении. Заслуживает внимания использование углеродных тканей в качестве подложек для катализаторов. [c.58]

    В углепластиках, предназначенных для длительной работы при температурах до 250 С, используют фенольные, до 300 С - кремнийорганические и до 330 С - полиимидные связующие. Разрабатываются связующие с рабочими температурами до 420 С. Еще более выраженным, чем у стеклопластиков, недостатком углепластиков является низкая прочность при межслоевом сдвиге. Это связано со слабой адгезией полимеров к углеродным волокнам. Чтобы гювысить адгезию, используют несколько способов травление поверхности волокон окислителями (например, азотной кислотой), выжигание замаслива-теля, аппретирование - предварительное покрытие волокон тонким слоем смачивающего их мономера вискеризацию - выращивание усов (ворса) на углеродных волокнах. Углепластики, в которых кроме ориентированных непрерывных волокон в качестве наполнителя используются усы, называют вискеризованными или ворсеризованными. [c.84]

    Химическая стойкость углепластиков позволяет применять их в производстве кислотостойких насосов, уплотнений. Углеродные волокна имеют низкий коэффищ1ент трения. Это дает возможность использовать их в качестве наполнителя для различных связуюших, из которых делают подшипники, прокладки, втулки, шестерни. [c.86]

    Введение в ПТФЭ таких наполнителей, как стекловолокно, графит, бронза, коксовая мука, дисульфид молибдена, углеродное волокно, силициды металлов, теплостойкие полимерные материалы, позволяет в 200—1000 раз снизить износ подшипников, в несколько раз увеличить теплопроводность, в 5—10 раз увеличить прочность при сжатии и твердость [39]. Количество вводимых наполнителей обычно составляет 10—407о (об.). [c.217]

    В УУКМ углеродный наполнитель содержится в виде дискретных волокон, непрерывных нитей шш лсгутов, войлоков, лент, тканей с плоским и объемным плетением, объемных структур. Волокна располагаются хаотически, одно-, двух- и трехнаправленно. Используют низкомодульные, высокомодульные и высокопрочные УВ, полученные из вискозных, полиакрилонитрильных волокон и каменноугольного пека. [c.86]

    В зависимости от типа полимерной матрицы различают наполненные реактопласты, термопласты и каучуки (о последних см. в ст. Наполненные каучуки). В зависимости от типа наполнителя Н.п. делят на дисперсно-наполненные пластики (наполнитель-дисперсные частицы разнообразной формы, в т.ч. измельченное волокно), армированные пластики (содержат упрочняющий наполнитель непрерывной волокнистой структуры), газонаполненные пластмассы, маслонаполненные ка)гчуки по природе наполнителя Н.п. подразделяют на асбопластики (наполнитель-асбест), графитопласты (графит), древесные слоистые пластики (древесный пшон), стеклопластики (стекловолокно), углепластики (углеродное волокно), органопластики (хим. волокна), боропластики (борное волокно) и др., а также на гибридные, или поливолокнистые, пластики (наполнитель-комбинация разл. волокон). [c.168]

    Для модифицирования св-в в П. вводят (в кол-ве 2-80%) гл. обр. наполнители (стекловолокно, углеродное волокно, мел, Ва804, тальк, графит или др.), антипирены (бромсодержащие орг. в-ва в сочетании с ЗЬгОз), полимеры (полиэтилентерефталат, поликарбонаты, термоэластопласты), красители. [c.615]

    Способы и условия получения и переработки П. и их св-ва определяются преим. типом связующего. Среди П. на основе термореактивных связующих (термореактивные П.) ведущее место по объему произ-ва занимают листовые полиэфирное прессматериалы. По составу такие П. очень близки к полиэфирным премиксам, отличаясь от них повыш. содержанием (до 50% по массе) и длиной волокнистого наполнителя (25 или 50 мм), сравнительно малым содержание.м дисперсного наполнителя (до 40% по массе) и обязат. присутствием загустителя, напр. MgO, для исключения сепарации связующего при формовании деталей. Полиэфирные П. производят след, образом на полиэтиленовую пленку наносят слой пасты связующего, затем на нем формуют ковер заданной структуры из рубленого стекловолокна или его смеси с непрерывными стеклянными, углеродными, арамидными или др. волокнами. Сверху получепньш мат покрывается второй пленкой со слоем пасты образовавшийся сэндвич уплотняется в импрегиирующем устройстве валкового типа или типа ленточного пресса и сматывается в рулон. Приготовленный П. выдерживают неск. суток при комнатной или неск. часов при повыш. т-ре для созревания (загущения связующего). Перерабатывают полиэфирные П. компрессионным прессованием в прессформах закрытого типа, предварительно раскроив лист и отделив защитную пленку. Полиэфирные П. значительно уступают премиксам по текучести при формовании, но превосходят их по прочностным характеристикам. Такие П. применяют в массовом произ-ве крупногабаритных деталей типа панелей, крышек резервуаров, защитных кожухов разл, машин и приборов, мебели и т. п. [c.86]

    УГЛЕРбД.УГЛЕРбДНЫЕ МАТЕРИАЛЫ, композиционные на основе углеродной матрицы и углеродных волокон. В качестве матрицы используют пироуглерод, коксовые остатки термореактивных смол, кам.-уг или нефтяного пека, в качестве волокон-наполнителей - высокопрочные углеродные волокна - нити (непрерывные и рубленые), жгуты, ткани, пространств, конструкции из [c.29]

    Среди наполнителей особую группу oop-isyro i армирующие материалы. К ним относятся стеклянные, асбестовые, борные, углеродные волокна, монокристаллы оксила алю.миния, карбида кремния и др Отличительной особенностью полимерных композиций, содержащих волокна, является анизотропия свойств. Поэто.чу для характеристики дефор-мационных и прочностных свойств используют несколько показателей Если волокна ориентированы преимущественно в одном направлении, то определяют продольный модуль Юнга (растягивающее напряженне а направлено вдоль оси ориентации волокон), траисверсалышй модуль Юнга т (о направлено перпендикулярно оси ориентации волокон) при сдвиге также определяют (У/, и С-,. [c.349]

    Наибольшее значение в промышленности имеют органические волокнистые и порошкообразные наполнители (древесная мука целлюлота, натуральные н синтетические волокна), углеродное (графит, кокс, технический углерод), металлы и их оксиды, силикаты и т д. [c.426]

    Тканые наполнители производятся главным образом на основе хлопчатобумажных, стеклянных и углеродных тканей. Их используют для получения высокопрочных армированных анизотропных материалов. В зависимости от морфологии используют рулонные ткани, тканые ленты и шнуры, а также однонаправленные ленты, в которых несущие высокопрочные волокна основы соединены в непрерывную ленту редкими нитями утка . На сегодняшний день армированные такими наполнителями пластики обладают наиболее высоким комплексом физико-механических, термодеформационных, теплофизических и эксплуатационных свойств. В качестве свя- [c.21]

    В качестве связующего таких ФПМ используются РФФС, НФФС с добавками каучука при необходимости. Состав наполнителей, как правило, сложный он включает рубленые стеклянные, высокомодульные углеродные волокна, оксиды металлов, сульфат бария, глинозем, порошковый или коротковолокнистый асбест. Для стабилизации л р и улучшения технологичности вводят стеараты бария и лития. [c.175]


Смотреть страницы где упоминается термин Волокна как наполнители углеродные: [c.612]    [c.342]    [c.337]    [c.337]    [c.204]    [c.350]    [c.612]    [c.365]    [c.55]    [c.447]    [c.569]    [c.76]    [c.440]    [c.55]    [c.270]    [c.447]   
Основы переработки пластмасс (1985) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Наполнители



© 2025 chem21.info Реклама на сайте