Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Размеры структурных образований в нефтяных дисперсных системах

    Центральное место в физико-химической механике нефтяных дисперсных систем занимают представления об активном состоянии сырья и экстремальном изменении эффективных размеров структурных образований в рассматриваемых системах при внешних и внутренних воздействиях на них, например механических, акустических, электромагнитных, введение модифицирующих агентов и т.п. Активное состояние сырья определяется либо по косвенным показателям, либо с применением специальных инструментальных методов анализа. Определение с помощью указанных методов размеров, степени ассоциации и строения структурных образований нефтяного сырья позволяет установить характерные особенности его поведения в процессах добычи, транспорта, переработки, хранения и применения, выявлять оптимальные условия и целенаправленно влиять на эти процессы. [c.80]


    Размеры структурных образований в нефтяных дисперсных системах [c.80]

    Таким образом, применение седиментационного анализа в большинстве случаев практически недопустимо для определения размеров структурных образований в темных высоковязких нефтяных дисперсных системах. Основной причиной, ограничивающей возможности седиментационного анализа в этом случае, является чрезвычайно медленное оседание частиц дисперсной фазы или его отсутствие в нефтяной диспер- [c.82]

    В работе [49] исследована возможность определения методом светорассеяния активного состояния нефтяной дисперсной системы по изменению радиуса частиц дисперсной фазы в мазуте смеси западно-сибирских нефтей в присутствии модификатора — экстракта селективной очистки масел. Исследовались 2% мае. растворы исходного сырья в гептан-толуольном растворителе. Средние размеры частиц дисперсной фазы рассчитывали по значениям оптической плотности исследуемых растворов [48]. Рассчитанные на базе экспериментальных данных радиусы частиц в испытуемых растворах составляли 60-150 нм. Во избежание расслоения растворов мазута в гептане и выделения асфальтенов в отдельную фазу проводили предварительную обработку ультразвуком подготовленных к испытаниям образцов. Подобное дополнительное диспергирование повышало устойчивость системы к расслоению, временно предотвращало коагуляцию частиц дисперсной фазы. Следует отметить, что проведенная обработка при подготовке образцов к испытаниям естественно оказывает влияние на результаты измерения и истинные размеры структурных образований в исходном мазуте. В этой связи предложенные авторами рекомендации по методу определения среднего радиуса частиц дисперсной фазы для оценки активного состояния рассматриваемой нефтяной системы требуют специального обсуждения. [c.83]

    В дополнение к многочисленным возможным методам исследования нефтяных дисперсных систем, рассмотренным в предыдущем разделе, значительный интерес представляет определение размеров структурных образований в нефтяных дисперсных системах, исключающее воздействия на систему, которые могут существенно нарушить структурную организацию и межмолекулярные взаимодействия в системе, например растворения, воздействия ультразвуком и т.п. Кроме этого, в большинстве случаев необходимость определения размеров связана, как правило, с темными высоковязкими нефтепродуктами. В этой связи перспективными можно считать исследования, направленные на определение структурных образований в нефтяных дисперсных системах, с применением метода вискозиметрии. [c.85]


    В нефтяных дисперсных системах применение корреляционных функций связано с определенными особенностями и ограничениями. Во-первых, необходимо выбрать некоторое условное единичное, с точки зрения размеров и границ, структурное образование. Во-вторых, в нефтяной дисперсной системе возможны слу ши, когда структурные образования находятся в непосредственном соприкосновении или даже перекрывают друг друга. Коллоидно-химическая структура системы в этом случае представляет гель, и тогда корреляционная функция превращается в нуль. Обнаружить четко взаиморасположение отдельных частиц не представляется возможным. В этом случае термин размеры структурных образований становится бессмысленным. Однако в разных системах можно тем не менее рассматривать и обсуждать структурные составляющие геля, которые могут характеризоваться размерами при определенных принятых граничных условиях. [c.175]

    В различных условиях существования углеводородные системы, нефти, газовые конденсаты и продукты их переработки могут рассматриваться в виде многокомпонентных нефтяных дисперсных систем. Изменение термобарических условий приводит к превращениям инфраструктуры указанных систем, которые наиболее выражены в области фазовых переходов. При этом важнейшими параметрами, которые характеризуют систему на микроуровне, являются дисперсность, энергия межмолекулярных взаимодействий, размеры, конфигурация, поверхностная и объемная активность структурных образований, представляющих дисперсную фазу, степень их сольвати-рования компонентами дисперсионной среды. Изменение указанных параметров отражается на основных макрохарактеристиках системы, например плотности, вязкости, упругости пара, агрегативной и кинетической устойчивости. Причем, как правило, при отклике на внешние или внутренние возмущения на нефтяную дисперсную систему изменение этих характеристик сопровождается нелинейными и неаддитивными эффектами. Отклонения от аддитивности различных свойств нефтяных дисперсных систем в процессе их превращений характерны не только для смесей различных углеводородов, но могут проявляться даже в пределах одного гомологического ряда. [c.302]

    Растворы лакового битума характеризуются низкими значениями величин А и, следовательно, большими размерами агрегированных структур, чем растворы асфальтита. Для неразрушенных структур этот эффект резко усиливается при введении сажи. Аналогичный эффект появляется в растворах асфальтенов. Растворы нефтяного пека при низкой концентрации характеризуются мелкими структурными образованиями, соизмеримыми с агрегатами сажевых частиц. Поэтому при низких концентрациях возможно их взаимодействие с контракцией объема фаз. Расчеты по формуле Муни — Ванда находятся в согласии с таким предположением. Таким образом, уравнения Френкеля — Андраде являются важным инструментом изучения нефтяных дисперсных систем, позволяющим оценить устойчивость и размеры части агрегированных структур в этих системах. [c.262]

    Указанные признаки вносят решающий вклад практически во все свойства нефтяных дисперсных систем, определяют их поведение при различных термобарических условиях, а также являются основой для выделения более конкретных взаимосвязей в нефтяных дисперсных системах, уточнения характера межмолекулярных взаимодействий, в конечном итоге позволяют некоторым специальным образом классифицировать нефтяные дисперсные системы. К настоящему времени накоплен значительный эмпирический материал в области исследования нефтяных дисперсных систем. Анализ этой феноменологической информации дает возможность создания принципиальных основ теории нефтяных дисперсных систем и их классификации. Базовыми понятиями теории нефтяных дисперсных систем считаются размеры структурных образований в нефтяной системе и ее устойчивость против расслоения. Следует подчеркнуть, что любые исследования нефтяных дисперсных систем в конечном итоге, как правило, сводятся к определению склонности системы к расслоению и анализу изменения размеров частиц дисперсной фазы. При этом естественно учитываются и рассматриваются возможные физическис и химические превращения в системе при определенных условиях ее существования. [c.67]

    Особое место занимают исследования коллоидной структуры нефтяных дисперсных систем методом рассеяния рентгеновских лучей под малыми углами [67 — 70]. Указанный метод проявляет чувствительность к полидисперсности и форме частиц исследуемых объектов, не зависит от их оптической плотности и многокомпонетнос-ти. Однако этим методом можно фиксировать только размеры ядра структурного образования, не включая сорбционно-сольватный слой, что связано с незначительным расхождением в значениях электронных плотностей сольватной оболочки и дисперсионной среды. Кроме этого, метод малоуглового рассеяния позволяет получать достаточно воспроизводимые результаты в случае слабоструктурированных систем, когда расстояние между соседними структурными образованиями намного превышает их размеры. С помощью рассматриваемого метода изучено [71] распределение по размерам структурных образований в нефтяных профилактических средствах. Показано, что в этих системах размеры частиц дисперсной фазы составляют от 1,7-3 нм до 40 нм, причем основу коллоидной структуры составляют частицы меньших размеров. [c.84]


    В соответствии с современными представлениями нефть к нефтепродукты при определенных условиях представляют собой нефтяные дисперсные системы /НДС/, в которых формируются. сложно-структурные единицы /ССЕ/, состоящие из надмолекулярных образований, окруженных сольватной оболочкой. Ранними исследованиями было показано, что при изменении растворяющей силы дисперсионной среды (при введении различных доба-, вок) происходит экстремальное изменение размеров частицдис-персной фазы, что приводит к такому же изменению свойств системы в целом. [c.132]

    В целом сложные структурные единицы нефтяных остатков находятся в динамическом равновесии со средой и изменение размеров ядер и толщины сольватной оболочки их могу г протекать по различным законам [14]. Главными факторами, определяющими возможность существования их в остатках и, соответственно, геометрические размеры, является наличие в них структурирующихся компонентов и ассоциатов, а также степень теплового воздействия. Нефтяные остатки относятся к свободнодисперсным системам, частицы которых могут независимо друг от друга перемещаться в дисперсной среде под влиянием теплового движения или гравитационньк сил. С изменением температуры в таких дисперсных системах изменяется энергия межмолекулярного взаимодействия дисперсной фазы и дисперсионной среды. Толстая прослойка дисперсионной среды между частицами снижает структурно-механическую прочность нефтяных дисперсных систем. Утоньшение сольватного слоя на поверхности ассоциатор повышает движущую силу расслоения системы на фа ы. Размеры основных зон структурной единицы при определенных температурах различны за счет того, что часть наиболее полярных компонентов сольватного слоя может переходить в дисперсную фазу (ядро), а часть в дисперсионную среду, находящуюся в молекулярном состоянии. Таким образом, по мере повышения температурь размеры радиуса ядра и толщины сольватного слоя могут проходить через экстремальные значения [14]. Ядро, состоящее из ассоциатов, при достижении максимальных размеров может распадаться на осколки, что ведет к образованию новых частиц дисперсной фазы, вокруг которых формируется сольватный слой и по мере изменения температуры для этих частиц характерны аналогичные стадии изменения размеров ядра и толщины сольватной оболочки. При высоких температурах и большой длительности нагрева внутри ядра может зародиться новая дисперсная фаза — кристаллит, представляющий собой надмолекулярную неябратимую структуру, обычно характерную для карбенов и карбоидов [14]. [c.26]

    Воздействие депрессоров и ингибиторов парафиноотложения на нефтяные системы осуществляется при температурах не выше 100°С, как правило, при нормальных или небольших избыточных давлениях. В этих условиях нефтяные системы представляют обратимые дисперсные системы. Дисперсной фазой в этих системах являются твердые углеводороды, включающие высокомолекулярные парафины, церезины, смолисто-ас-фат ьтеновые вещества, полициклические ароматические углеводороды и т.п. Физические взаимодействия указанных групп химических элементов приводят к формированию в системе агрегативных комбинаций, представляющих собой обратимые структурные образования различных размеров, зависящих, в частности, от температуры системы. [c.244]

    Среди факторов, в значительной степени определяюших физикохимические и технологические свойства нефтяных дисперсных систем, особое место занимают размер и структура дисперсных частиц (в литературе они называются сложными структурными единицами, ассоциатами, везикулами, неоднородностями, флуктуациями и пр.). Механизм и кинетика процессов, приводящих к образованию и преврашению этих частиц, зависят от межмолекулярных взаимодействий в системе (сила Ван-дер-Ваальса, водородные связи, химические взаимодействия и пр.). Регулируя межмолекулярные взаимодействия (через размеры и Сфуктуру дисперсных частиц), можно управлять свойствами нефтяных дисперсных систем. [c.162]

    Эмульсия — механическая смесь двух взаимно нерастворимых жидкостей (нефти и газа), одна из которых распределена в объеме другой в виде глобул различных размеров (до нескольких мкм). Для образования эмульсии необходимо механическое воздействие, в результате которого происходит дробление (диспергирование) капель одной из жидкостей (дисперсной фазы) в объеме другой (дисперсионной среды). Стойкость нефтяных эмульсий определяется структурно-механическими свойствами защитной пленки, которая образуется на границе раздела вода — нефть. Образование зай1итной пленки и ее прочность обусловлены присутствием в системе поверхностно-активных веществ — эмульгаторов, их свойствами и количеством. [c.41]


Смотреть главы в:

Научные и прикладные аспекты теории нефтяных дисперсных систем -> Размеры структурных образований в нефтяных дисперсных системах




ПОИСК





Смотрите так же термины и статьи:

Дисперсные системы



© 2025 chem21.info Реклама на сайте