Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Структура полимеров коллоидно-химическая

    На рис. 1.18 приведены восемь наиболее характерных релаксационных процессов, которые наблюдаются в наполненных сшитых линейных полимерах (резины). В стеклообразном состоянии обычно наблюдаются процессы у, у и р. Это группа релаксационных механизмов, связанных с подвижностью боковых привесков макромолекул и отдельных ее участков намного меньших сегментов полимерной цепи. а-Процесс соответствует стеклованию, связанному с замораживанием сегментальной подвижности в неупорядоченной части каучука -процесс —потере подвижности сегментов в жесткой части каучука, адсорбированного на активном наполнителе Я- процесс объединяет группу релаксационных процессов, связанных с подвижностью надмолекулярных структур ф-процесс соответствует подвижности частиц активного наполнителя и б-процесс — химической релаксации, связанной с подвижностью химических поперечных связей сшитого полимера. Таким образом, три релаксационных процесса а, X и ф тесным образом связаны с коллоидно-дисперсной структурой полимеров. [c.61]


    Эффективность акриловых реагентов связана с особенностями их состава и строения. В отличие от реагентов на основе полисахаридов с их нестойкими эфирными и гликозидными связями у акриловых полимеров цепи скрепляются прочными связями углерод — углерод. Это придает им большую энзиматическую, гидролитическую и термоокислительную устойчивость. Существенно и расположение функциональных групп непосредственно у главной цепи, а не в связи с циклическими группировками, как у крахмала или КМЦ. Малые размеры заместителей (группы N, СНз, СООН) и высокая их полярность обеспечивают гибкость полимерных цепей и их развернутые конформации, наиболее выгодные с точки зрения химической обработки и легко регулируемые изменениями pH. Содержание большого числа активных групп, различных по своей природе, и атомов водорода с повышенной способностью к образованию водородных связей обусловливают своеобразие коллоидно-химических свойств реагента и его многофункциональность. С этим связана и склонность полиакрилатов к взаимодействию с щелочноземельными и другими металлами. Большое значение имеет структура макромолекул — распределение в них отдельных звеньев. Для промышленного продукта характерно неупорядоченное строение и размещение функциональных групп. [c.192]

    Охарактеризовать лигносульфонаты достаточно сложно, поскольку они представляют собой полидисперсную систему, нестабильное соотношение фракций в которой может оказывать существенное влияние на коллоидно-химические свойства. Однако все же возможно выявить основные закономерности. Как видно из схемы на рис. 7.8, макромолекула лигносульфонатов образует нелинейную структуру, приближающуюся к характерной для глобулярных полимеров. Особенностью подобных структур является их компактность и гибкость даже при большой [c.233]

    Физическая химия полимеров как самостоятельная область химии высокомолекулярных соединений развилась в 40-е годы на базе классической коллоидной химии [29], традиционным предметом исследования которой были, в частности, лиофильные коллоиды — природные полимеры [30]. Отказ от ряда представлений классической коллоидной химии и учет специфики строения высокомолекулярных соединений стимулировали интенсивное развитие исследований их структуры, физико-химических и механических свойств. Однако дальнейшее развитие представлений о структуре полимеров и свойствах их растворов вновь привело к необходимости рассмотрения гетерогенности этих систем на молекулярном и надмолекулярном уровнях, выражающейся в существовании различных степеней порядка в расположении макромолекул даже в аморфной фазе, существовании многофазных полимерных систем, наличии агрегатов или ассоциатов (мицелл) в термодинамически устойчивых растворах [31]. [c.9]


    Особенности структуры полимеров в поверхностных слоях и наличие границы раздела существенно отражаются как на условиях протекания химических реакций в самих полимерах (окисление, деструкции), так и на условиях образования полимерных молекул. Этот чисто- коллоидно-химический эффект особенно важен при получении армированных пластиков, при склеивании, формировании покрытий и других случаях протекания реакции образования полимеров на границе раздела. Реакции образования полимеров на границе раздела составляют самостоятельную область физико-химии поверхностных явлений в полимерах. В чем особенности этих процессов по сравнению с реакциями образования низкомолекулярных соединений в гетерогенных условиях  [c.315]

    Коллоидно-химическое изучение двухфазных смесей полимеров предполагает прежде всего установление зависимости механических свойств дисперсии полимер в полимере от структуры дисперсии и свойств каждой фазы. Видимо свойства смеси, как и всякой коллоидной системы, зависят главным образом от объемной доли дисперс- [c.24]

    На ранних этапах развития коллоидной химии набухание представлялось довольно странным явлением, присущим только некоторым особым материалам. Понимание его сути пришло более или менее одновременно с формированием концепции о высокополимерах. С термодинамической точки зрения оказалось, что процесс набухания полимеров и хорошо известный процесс растворения низкомолекулярных веществ весьма сходны между собой. Но даже несмотря на это, при изучении влаго-поглощающих полимеров, что имело место до исследований по набуханию каучуков, все время считали, что этот процесс специфичен и скорее связан с химическим взаимодействием и образованием каких-то новых связей, чем с общим механизмом диффузии и набухания. Только в результате развития статистической теории эластичности и применения этой теории Флори и Хаггинсом к явлениям набухания и растворения каучукоподобных полимеров возникла современная трактовка этого вопроса, связывающая явление набухания с молекулярной структурой полимера. [c.213]

    В соответствии с темой главы здесь рассматривается только коллоидно-химический метод. По этому методу полимер, который предназначается для образования оболочки микрокапсулы, растворяется в непрерывной фазе, например, желатин в воде. В данном растворе диспергируется вещество дисперсной фазы. Получается эмульсия или суспензия, дисперсная фаза которой защищена адсорбционной оболочкой, имеющей рыхлую структуру (см. стр. 163). Далее производится выделение оболочечного материала на поверхность капли в виде плотной оболочки. При этом происходит как сжатие бывшего защитного слоя эмульсии, так и выпадение высокомолекулярного ПАВ из раствора на поверхность. Эта операция может осуществляться различными методами изменением pH, введением электролитов (высаливание), воздействием ультразвука, изменением температуры, введением растворителя или второго высокомолекулярного соединения, противоположного по знаку первому. [c.191]

    Указанные теории определяют общую качественную картину процессов, которые могут протекать при формировании пленок из дисперсий полимеров и не позволяют установить взаимосвязь между строением частиц, структурой и свойствами пленок на их основе. В связи с этим целый ряд экспериментальных закономерностей, наблюдаемых при формировании пленок из дисперсий полимеров, не могут быть объяснены существующими теориями пленкообразования. Величина капиллярного давления в соответствии с расчетными данными значительно превышает прочность пленок и возникающие в них при формировании внутренние напряжения, причем между радиусом частиц и скоростью пленкообразования не всегда соблюдается установленная теорией закономерность. При астабилизации частиц дисперсий в процессе сушки пленок или при воздействии электролитов частицы сохраняют границы раздела даже в пленках каучуковых латексов, находящихся в высокоэластическом состоянии, что свидетельствует о протекании более сложных физико-химических процессов при формировании пленок из дисперсий полимеров. Свойства пленок из дисперсий полимеров как физико-механические, так и водопоглощение не определяются однозначно модулем эластичности полимера или другими критериями, вытекающими из указанных теорий, а зависят от целого ряда факторов. Наиболее важными из них являются химический состав полимера, определяющий его полярность, степень разветвленности, характер и распределение функциональных групп на поверхности частиц, а также коллоидно-химическая природа дисперсий. Эти факторы существенно влияют на структуру частиц и распределение на их поверхности активных групп, скорость структурообразования, структуру и свойства пленок. [c.200]


    Другим фактором, определяющим структуру и свойства пленок из смешанных дисперсий, является совместимость полимеров. Таким образом, технические свойства пленок в целом определяются двумя видами совместимости — коллоидно-химической (на уровне полимерных частиц) и термодинамической (на уровне макромолекул). [c.43]

    Равномерное распределение разнородных глобул в структуре пленок, полученных из смешанных дисперсий, реализуется сравнительно редко. Примером таких систем являются смеси полимеров, близких по полярности (разумеется, с однотипной системой коллоидно-химической стабилизации)—смеси СКС-30 и СКС-65, а также смеси разнородных полимеров, но с высокой (близкой к предельной) степенью адсорбционной насыщенности эмульгатором. В этих случаях свойства пленок аддитивны в отношении содержания полимерных компонентов. [c.48]

    Внутренняя структура, а следовательно, и механические свойства коллоидных и дисперсных систем определяются взаимодействием частиц дисперсной фазы с молекулами дисперсионной среды и между собой. Изучению внутренней структуры и строения материалов посвящен раздел коллоидной химии, названный физико-химической механикой. Физико-химическая механика дисперсных систем изучает их реологические свойства в связи с внутренним строением и решает вопросы управления ими с целью получения новых материалов. Значение этого раздела коллоидной химии очень велико и с практической, и с теоретической точки зрения. Такие системы, как цементные растворы, растворы полимеров, глинистые суспензии, лаки, краски, пасты, бумажная масса, почвы, биологические системы, обладают определенной структурой и потому характеризуются особыми структурно-механическими свойствами. [c.427]

    Современная полимерная химия представляет собой область науки, впитавшую в себя многие положения органической и неорганической химии, физической и коллоидной химии, физики твердого тела и других научных дисциплин. Это объясняется многообразием химических структур высокомолекулярных соединений и процессов их образования, спецификой свойств полимеров и приводит к тому, что интерес ко многим, особенно промышленным полимерам, не ослабевает уже на протяжении более 50 лет. Вместе с тем необходимо отметить, что анализ полимеров, часто плохо растворимых и не плавящихся до начала термического разложения, сопряжен во многих случаях со значительными экспериментальными трудностями. Сказанное касается и изучения процессов образования высокополимеров. При этом, хотя задачу синтеза новых полимеров нельзя считать более простой по сравнению с их анализом, все же, вероятно, в идеале соотношение между химиками, занимающимися исследованием полимеров, и химиками-синтетика-ми должно быть существенно больше единицы. [c.5]

    Последующие исследования структуры и химических превращений золь- и гель-фракций каучука, развитие химии высокомолекулярных соединений и исследование свойств синтетических каучуков (СК) привели к заключению [1, с. 126, 215, 290], что различие между фракциями состоит не в степени агрегации коллоидных частиц, а в величине молекулярной массы и разветвлен-ности молекул, составляющих гель-фракцию. Одновременно было показано, что физические свойства вулканизатов (отсутствие растворимости и пластического течения, повышение эластичности и прочности и т. д.) хорошо объясняются и могут быть предсказаны на основании положения о соединении отдельных линейных молекул каучука химическими связями в единую пространственную сетку. В то же время попытки создать модельные связнодисперсные коллоидные системы с граничными сольватными слоями в случае каучукоподобных полимеров, которые обладали бы высокой прочностью, оказались безуспешными [4, с. 340]. [c.12]

    Физико-химия полимеров в значительной степени под влиянием успехов современной коллоидной химии как физико-химии поверхностных явлений в дисперсных системах и физико-химической механики дисперсных структур сталкивается с необходимостью рассмотрения процессов, приводящих к возникновению межфазных границ, т. е. возникновению гетерогенности (двух- или много-фазности) в первоначально истинном растворе полимера при повышении его концентрации или при изменении температуры, например, при гелеобразовании, или в блочных полимерах при частичном образовании кристаллической дисперсной фазы, сосуществующей с аморфной средой. Возникновение так называемых надмолекулярных структур зачастую сводится к образованию частиц новых фаз, так что система, в которой эти процессы происходят, становится двухфазной, с явно выраженной поверхностью раздела. [c.262]

    В предлагаемой монографии основное внимание уделено закономерностям физико-химического и механического поведения наполненных полимерных систем и особенностей поверхностных явлений на границе раздела полимер — твердое тело. В этом смысле физическую химию наполненных полимеров можно рассматривать как часть коллоидной химии, посвященную поверхностным явлениям в полимерных системах [25, 26]. Вместе с тем мы рассматриваем также и ряд новых направлений, возникших в этой области и развивавшихся в последние годы исследование полимеров, наполненных полимерными наполнителями, особенности реакций получения полимеров в присутствии наполнителей, проблемы надмолекулярного структурообразования в присутствии наполнителей и др. При этом в центре внимания остаются те изменения структуры и свойств полимера, которые связаны с наличием границы раздела фаз и действием поверхностных сил на этой границе, так как именно эти факторы определяют в конечном счете свойства получаемых материалов. [c.7]

    В учебном пособии рассмотрены состав и свойства нефтяных битумов и их композиций с полимерными добавками. Изложены данные по химическому составу различных фракций и влияние его на коллоидную структуру битумов. Большое внимание уделено процессу окисления как основному методу получения этого продукта, а также. модификации свойств битумов добавками полимеров. [c.2]

    Таким образом, введение коллоидных частиц металла в кристаллизующиеся полимеры дает мощное средство по модифицированию кристаллизующихся полимеров по надмолекулярной структуре с целью производства из них изделий с данным комплексом физико-химических свойств. [c.93]

    Излагаются экспериментальные результаты фракционирования методом дробного осаждения асфальтена сырца нефти Покровского месторождения. Были выделены и исследованы структура и коллоидно-химические свойства 16 фракций, представляющих собой полимер-гомологический ряд асфальтово-смолистых веществ, постепенно переходящд1х по свойствам (растворимости) в я-эфире от фракций, относящихся к смолам, к фракциям, плохо растворимым в бензоле, т. е. карбеноподобным веществам, с переходом через фрак дни. соответствующие асфальтенам. [c.213]

    В практике химической обработки буровых растворов большое значение имеет обширная и все увеличивающаяся группа реагентов на основе полисахаридов. В эту группу входят КМЦ и другие эфиры целлюлозы, крахмал, реагенты из природных растительных камедей и морских водорослей, продукты микробиологического синтеза и др. У этих реагентов есть много общего в составе, строении и свойствах. Схематически они представляют собой совокупности макромолекулярных цепей, образованных ангидроглюкознымп циклами различных углеводных остатков, скрепленных непрочными гликозидными связями, а между цепями — ван-дер-ваальсовыми силами, водородными связями или. поперечными мостиками. Обилие функциональных групп обусловливает реакционную активность цепей и придает им характер полиэлектролитов. Природа углеводных мономеров и их функциональных групп, степени замещения, полимеризации и ветвления, однородность полимера, а также характер связей, конформация цепей и структур определяют коллоидно-химические свойства этих реагентов. Все они различаются по стабилизирующей способности и обладают сравнительно невысокой термической, ферментативной и гидролитической устойчивостью. Из исходных полисахаридов их получают путем деполимеризации и введения достаточного количества функциональных групп, с тем, чтобы обеспечить водорастворимость и необходимый уровень физикохимической активности. Таким образом, свойства будущего реагента непосредственно связаны с природой и строением исходного полисахарида. [c.156]

    В свою очередь изучение равновесных и неравновесных свойств газов, структуры кристаллов, диэлектрических, оптических и других свойств вешеств дает много для понимания природы межмолекулярных сил. Спектроскопия в ее различньк формах — интенсивное средство исследования межмолекулярных сил. Наиболее мощным и перспективным для их исследования является метод рассеяния молекулярных пучков. Межмолекулярное взаимодействие играет большую роль и в химических процессах, оно проявляется в реакциях, протекающих в растворах, на поверхностях и в катализе. Исследование этих процессов также дает многое для поним шия межмолекулярного взаимодействия. Межмолекулярные силы сейчас исследуются очень интенсивно из-за большой важности для физики, химии, молекулярной биологии, кристаллографии, науки о полимерах, коллоидной химии, химии поверхностей и других естественных наук. [c.263]

    Таким образом, можно видеть, что вновь стирается то различие между двумя областями химической науки — физической химией наполненных полимеров и коллоидной химией дисперсных систем, которое существовало в 40—60-е годы. Нам кажется, что комплексный физико-химический и коллоидно-химический подход к структуре и свойствам полимеров и на этой основе — к структуре и свойствам композиционных полимерных материалов дает возможность наиболее правильно описывать и предсказывать саой-ства наполненных полимеров, представляющих собой полимерные гетерогенные дисперсные системы, [c.16]

    Если смесь двухфазна, то она представляет собой по структуре коллоидную систему, а свойства последней, как это известно из коллоидной химии, зависят от размера и формы частиц, их числа в единице объема и т. д. Таким образом, свойства двухфазных смесей полимеров следует сопоставлять не столько с термодинамическим параметром взаимодействия полимеров, сколько с коллоидно-химическими параметрами, общепринятыми в коллоидной химии дисперсных структур. [c.11]

    Известные способы получения пористых адсорбентов можно разделить на четыре группы [227, 228] 1) активирование гру-бодисперсиых материалов воздействием химически агрессивных сред, например получение активных углей действием газов-окис-лителей на кокс или пропиткой органического материала некоторыми солями с последующей их химической обработкой 2) коллоидно-химическое выращивание частиц золей с последующим получением из них гелей с рыхлой упаковкой (при высу шиваиии таких гелей образуется структура с боЛьЩим числом пор-зазоров между частицами силикагели, алюмосиликагели и др.) 3) синтез пористых кристаллов — цеолитов, обладающих свойствами молекулярных сит (размеры каналов в таких кристаллах составляют 0,4—1,0 нм) 4) термическое разложение карбонатов, гидроксидов, оксалатов, некоторых полимеров при умеренных, во избежание спекания, температурах (получение активных оксидов, некоторых пористых активных углей, губчатых металлов). Как видно, получение адсорбентов является весьма сложной задачей, для решения которой необходимы значительные энергетические ресурсы, использование дорогостоящих химических реактивов, сложной аппаратуры и больших затрат времеии. [c.154]

    Таким образом, представленные данные свидетельствуют о принципиальной возможности проведения химических реакций непосредственно в пористой структуре полимера, деформированного в ААС. Интересно, что в то время как процессы фазового разделения, происходящие в полимерной матрице при выделении низкомолекулярного компонента из раствора или расплава, приводят к возникновению текстуры, фазовое разделение, происходящее при химическом превращении, приводит к его полной разориентации. Конечный продукт, полученный в результате описанных выше химических превращений, представляет собой ориентированную пленку ПЭТФ, содержащую более 15% (масс.) металлического серебра в чрезвычайно тонкодисперсном, коллоидном состоянии, равномерно распределенного во всем объеме полимера. Очевидно, что получить такую металлополимерную композицию каким-либо другим способом является весьма сложной и трудоемкой задачей. Описанный выше эксперимент показывает принципиальную возможность получения полимерных композиций, содержащих практически любые низкомолекулярные вещества. Действительно, если низкомолекулярный компонент невозможно ввести в полимер непосредственно из жидкой фазы в процессе деформации, существует возможность его внедрения в структуру полимера в результате химических превращений. [c.168]

    И Р-процессы. Эта группа релаксационных процессов, как указывалось выше, связана с подвижностью боковых подвесков макромолекул и отдельных ее участков, размер которых намного меньше сегментов полимерной цепи. Для эластомера СКМС-Ю у - и у-процессы могут быть отнесены к подвижности боковых метильных и стирольных групп. Далее, а-процесс, который детально будет обсуждаться в гл. 4, соответствует стеклованию, связанному с замораживанием сегментальной подвижности в неупорядоченной части эластомера (замораживание подвижности свободных сегментов) релаксационный -процесс соответствует подвижности сегментов полимера, адсорбированного на активном наполнителе > процесс объединяет группу релаксационных процессов, связанных с подвижностью надмолекулярных структур ф-процесс соответствует подвижности частиц активного наполнителя и б-процесс — химической релаксации, которая зависит от подвижности химических поперечных связей сшитого полимера. Таким образом, а -, к- и ф-релаксациопные процессы тесным образом связаны с коллоидно-дисперсной структурой полимеров. [c.92]

    Все эти факты с достаточной убедительностью свидетельствуют о том, что коллоидно-химические процессы агрегации и дезагрегации, если и наблюдаются в каучуке, то они не играют доминирующей роли в превращениях золь-каучук гель-каучук. В основном эти процессы являются химическими и различие между золь- и гель-каучуками состоит в различии их молекулярной структуры. Как наглядно показал Штаудингер 3 опытах с полистироламй, физические свойства полимеров (плотность, растворимость, характер набухания и др.) являются [c.274]

    Протяженные переходные слои в строгом смысле нельзя называть межфазными, поскольку причины их образования не носят термодинамического характера. Вместе с тем вследствие своей протяженности они вносят существенный вклад в свойства композитов. Морфологические изменения на границе раздела двух фаз, вызывающие появление протяженных слоев, являются результатом взаимного влияния компонентов в межфазной зоне на структурообразование. В результате этого влияния условия кристаллизации одного из компонентов изменяются либо этот процесс может быть вообще подавлен. Кроме того, вследствие межфазного взаимодействия изменяются условия образования аморфных глобулярных структур или условия молекулярной упаковки [322, 546]. Изменение условий структурообразования в межфазной области, как и влияние на структуру границы раздела с твердым телом, приводит к появлению либо бесструктурной, либо морфологически отличной области между двумя фазами. Эта область и является структурно-обусловленным межфазным слоем. Такой механизм проявляется при смешении двух полимеров в расплаве независимо от того, образуют ли полимеры в расплаве совместимую систему или нет, поскольку формирование межфазного слоя происходит в результате изменения условий (например, понижения температуры) в соответствующей области фазовой диаграммы. С другой стороны, при получении композита из расплава смеси двух несовместимых полимеров в действие вступают также коллоидно-химический и микрореоло-гический механизмы. [c.212]

    Тнксотропная структура формируется при добавке плохих растворителей, разветвленных олигомеров, сшивающих агентов, структурирующих полимеров, поверхностно-активных веществ, диспергаторов, а также путем синтеза полимеров и олигомеров с регулярным строением молекул. Модифицирующие добавки выбирают в зависимости от химического состава и структуры полимера. В одних случаях — это олигомеры и бифункциональные соединения, образующие мостики между надмолекулярными структурами в других — это каркас пространственной сетки, в ячейках которой располагается основной полимер. Для полимерных дисперсий с крупными частицами коллоидного размера применяют специальные модификаторы, которые вначале дробят частицы дисперсий на более мелкие структурные элементы, а затем сшивают их в пространственную сетку. [c.133]

    По широте и значимости своих приложений коллоидная химия занимает особое место. Прежде всего, ее развитие уже в начале XX в. способствовало решению ряда основных проблем естествознания теоретические и экспериментальные исследования в области броуновского движения привели к утверждению реальности молекул 1[ плодотворности методов статистической физики. Исследованхтя мономолекулярных слоев способствовалгг появлению новых методов определения действительных размеров и строения молекул. Ряд новых методов, возникших в связи с развитием коллоидной химии, получил широчайшее распространение. Коллоидная химггя разрабатывает физико-химические основы ряда важнейших проблем геологии и геохимии — выветривания, миграции, генезиса минералов и горных пород и служит основой почвоведения с агрохимией и грунтоведения. Она решает задачи получения оптимальной дисперсной структуры почв для повышения их плодородия, создания оптимальных строительных свойств грунтов и методов их укрепления. Вместе с химией полимеров коллоидная химия разрабатывает учение о биоколлоидных структурах и управлении ими как важную физико-химическую основу биологии и ее приложений. [c.253]

    Достоинством этого направления является возможность поверхностной модификации полимерных частиц за счет взаимодействия макромолекул диспергированного полимера с низко- или высокомолекулярным модификатором, находяшимся в водной фазе, чего нельзя обычно достичь методом сополимеризации. Это открывает широкие возможности для модификации прежде всего коллоидно-химических свойств воднодисперсионных пленкообразователей, а также их пленкообразующей способности, структуры и свойств пленок. Высокая дисперсность полимера дает возможность проведения модификации с приемлемой с технологической точки зрения скоростью, изменение растворимости реагента в полимерной фазе позволяет регулировать характер и глубину превращения, а изменение природы модифицирующего агента — получать пленкообразователи с различным комплексом свойств. [c.148]

    Введение врдно-спиртового раствора ФФС, очевидно, существенно влияет на коллоидно—химические свойства системы микрогетерогенная структура полученной сложной системы становится значительно более однородной, крупные агломераты отсутствуют (2-я стр. обложки, увеличение 5000). Однако в результате термической обработки, приводящей к образованию сетчатого полимера из ФФС, а также образованию блоксополимера последней с ПВС, происходит как бы восстановление исходной структуры немодифицированного ПВА (1-я стр. обложки, увеличение 5000). Очевидно, при полимеризации смолы, которая играла роль "временного пластификатора" происходит микрорасслоение и образование агломера . [c.80]

    Нефтяные системы можно отнести к объектам нового направления в физике конденсированных сред, получившем условное название физики мягкого состояния и объединяющем физику полимеров, жидких кристаллов, критических явлений, коллоидно-дисперсного состояния [4]. Существует значительная корреляция между свойствами на микро-, мезо- и макроуровнях их супрамолекулярной организации (рис. 1.) В соответствии с обобщенными принципами химической кибернетики [5] технологический процесс рассматривается как передача и закрепление в материале определенной информации, которая и определяет комплекс его свойств. Носителем информации является структура исходного материала. В замкнутом технологическом цикле 1Е=соп81, где I — уровень информации, заложенный в исходном сырье, а Е — энергетические затраты на технологической стадии. Чем больше информации заложено в исходном сырье, тем меньше необходимо за[тратить энергии для достижения необходимого уровня конечных свойств. Технологические режимы должны быть такими, чтобы уровень исходной структурной организации сырья не только не уменьшался в ходе превращений (такое возможно в силу неопределенности структурных перестроек в ходе технологического процесса), а возрастал, достигая максимальной степени в конечном продукте. Рис. 1 иллюстрирует возможности управления процессами на макроуровне влиянием на микроструктуру нефтяных систем. [c.174]

    С другой стороны, образование твердых тел с характерными для них механическими свойствами также теснейшим обрааом. связано.,а процессами, изучаемыми современной коллоидной химией в виде проблемы структурообразования в дисперсных системах (суспензиях) и растворах высокомолекулярных соединений. Большое значение здесь имеют оба основных типа структур. Первый тип — это коагуляционные структуры (пространственные сетки), возникающие вследствие беспорядочного сцепления мельчайших частичек дисперсной фазы или макромолекул через тонкие прослойки данной среды, и кристаллизационно-конденсационные структуры, образующиеся в результате непосредственного срастанЯя кристалликов с образованием поликристаллического твердого тела Второй тип — образование химических связей (поперечных мостиков), как при вулканизации линейных полимеров типа каучуков или в пространственных полимерах, например, в студнях кремнекислоты. [c.211]

    Очень коротко опишем наши опыты с Аграновой, Барановым и Гольциным [80]. Отправной системой был разбавленный, но близкий к переходу в полуразбавленный раствор полиакрило-нитрила в диаметилформамиде (ДМФ). Благодаря наличию активной нитрильной группы этот полимер легко вступает в-реакции полимераналогичных превращений, включающих и сшивание цепей, и могущих инициироваться чисто термически. Мы следили за поведением подогреваемых растворов. Разумеется, по мере необходимости — пока они сохраняли видимость растворов, а не гелей или коллоидных систем (проверить это было легко простым разбавлением)—мы уменьшали концентрацию и определяли характеристическую вязкость. Хотя она в данном случае и не является однозначной характеристикой М, так как из-за термических реакций конфигурация молекул и их химическая структура меняются, все же сохраняется зависимость. [c.126]

    ХИМИЧЕСКАЯ МОДИФИКАЦИЯ ПОЛИПРОПИЛЕНА И ЕГО НРОИЗ-ВОДНЫХ/Филилюшкин А. Г., Воронин Н. П. // Структура растворов и дисперсий Свойства коллоидных систем и нефтяных растворов полимеров.— Новосибирск Наука. Сиб. отд-ние, 1989, [c.184]

    Возникли новые разделы коллоидной химии. Исследование элементарных актов взаимоде11Ствия коллоидных и микроскопических частиц, как основы процессов коагуляции и структурообразования дисперсных систем, привело к созданию физико-химии контактных (межфазных) взаимодействий, представляющей также интерес для исследования контакта макроскопических твердых тел. Учение о полуколлоидах превратилось в большой раздел коллоидной химии, посвященный свойствам растворов поверхностно-активных веществ и механизма их действия. Растворы высокомолекулярных веществ, которые еще недавно, казалось, полностью выходят за рамки коллоидной химии, составили в определенной своей части основу коллоидной химии полимеров. Разработка механизма эффекта Ребиндера и другие исследования влияния поверхностных явлений на прочность и механические свойства твердых тел и дисперсных структур развились в физико-химическую ме- [c.3]

    Казалось бы естественным изучение фазового состава основывать главным образом на исследовании микроструктуры смеси полимеров. Прямое исследование микроструктуры в световом (фазово-контрастном) или электронном микроскопе при современных методах подготовки образцов дает интересную информацию о структуре смеси [2, 3, 77, 78, 80, 84, 85, 88—90, 155 165 и др.]. Этот метод дает также информацию, которую вообще нельзя получить другими методами. Но метод имеет и свои недостатки, самый основной из которых обусловлен высокомолекулярной природой полимеров. Если в смеси полимеров размер частиц дисперсной фазы составляет, например, 100— 150 А, то это могут быть либо действительно частицы второй фазы, либо такие микронеоднородности, которые свойствами фазы не обладают. Действительно, одна макромолекула, свернутая на себя, имеет размер указанного порядка. Если полимеры совместимы и произошло диспергирование до отдельных макромолекул, то под микроскопом такие макромолекулы могут выглядеть как частицы второй фазы, даже если произошло самопроизвольное растворение одного полимера в другом. В истинных растворах низкомолекулярных веществ обычно происходит ассоциация однородных молекул. Если макромолекулы образуют ассоциат еще до возникновения новой фазы, то он может иметь размеры обычных коллоидных-частиц. Поэтому наличие микронеоднородности, видимой в микроскоп, не есть еще однозначное подтверждение наличия двухфазной структуры система двухфазна тогда, когда свойства частички идентичны свойствам большого объема материала дисперсной фазы. В сущности такой подход следует из определения Гиббса. Так, в книге Киреева ([166], стр. 232) сказано Фаза — совокупность всех гомогенных частей системы, одинаковых по составу и по всем химическим и физическим свойствам (не зависящим от количества вещества) и отграниченных от других частей системы некоторой поверхностью (поверхностью раздела) . [c.35]

    Разработан новый метод определения молекулярных весов высокомолекулярных соединений. Вследствие коллоидного характера этих веществ или их производных в растворенном состоянии измерение вязкости оказалось наиболее подходящим приемом определения молекулярных весов многих природных и синтетических высокомолекулярных соединений. Химическим определением характера концевых групп высокополимерных молекул полиоксимети-лена установлено, что эти молекулы построены таким же образом, как и молекулы низкомолекулярных соединений с преобладанием в молекуле цепей, т. е. молекулы имеют нитеобразную форму. Это было применено к изучению многих синтетических высоко полимер ных веществ и послужило основанием для определения структуры природных высокомолекулярных веществ. На основании крио ско пи ческих и осмотических определений молекулярного веса, а также гидрсгенизации и получения производных или переосаждения высокомолекулярных молекул было сделано заключение, что частицы полимеров не большие мицеллы, а молекулы в смысле классической органической химии. Дальнейшее исследование полимерных соединений направляется на выяснение 1) элементарных частиц (мономерных молекул), образующих полимер, 2) типа связи и 3) размера, а также формы частиц. [c.654]

    Особенности применения ЭХ для разделения нефтепродуктов связаны в первую очередь со сложностью состава разделяемой смеси, В состав неф-тепрод)жтов входят соединения различного химического строения, имеющие соответствешо и молекулы разной конфигурации, обладающие различной растворимостью, адсорбционной способностью и т. д. Полимеры же, для исследования которых в первую очередь разрабатывалась и широко использовалась эксклюзионная хроматография, представляют собой довольно однородную в химическом отношении смесь, компоненты которой различаются главным образом размером молекул. Другим не менее важ-ньпм обстоятельством, обусловливающим особое поведение нефтепродуктов при эксклюзионном разделении, является коллоидная структура тяжелых остаточных нефтепродуктов (гудроны, битумы) и вьщеленных из них высокомолекулярных соединений (асфальтенов). При растворении этих продуктов в разных растворителях, при разной степени разбавления могут наблюдаться явления диссоциации-ассоциации коллоидных частиц, приводящие к дополнительным осложнениям при интерпретации результатов ЭХ-разделения, [c.74]

    Силы, вызывающие адсорбцию макромолекул флокулянта на дисперсной фазе (взвешенных веществ), имеют различную природу. Они зависят от химического состава ВМС и дисперсных частиц, наличия йоногенных групп в макромолекуле, а также структуры и электрического заряда коллоидных частиц. Так, линейные полимеры или полимеры со слегка изогнутой цепью являются лучшими флокулянтами, чем глобулообразные макромолекулы. Флокулирующее воздействие ВМС зависит не столько от жесткости макро-молекулярного клубка, сколько от его размеров в растворе, которые определяются как природой полимера, так и его макромолекулярной массой. Молекулярная масса в основном влияет на флокулирующую способность неионных и одноименно заряженных полиэлектролитов ее увеличение способствует снижению оптимальной флокулирующей дозы реагента. В нейтрализации заряда поверхности дисперсных частиц молекулярная масса полимеров играет меньшую роль. [c.211]


Библиография для Структура полимеров коллоидно-химическая: [c.90]   
Смотреть страницы где упоминается термин Структура полимеров коллоидно-химическая: [c.253]    [c.5]    [c.113]    [c.113]   
Основы переработки пластмасс (1985) -- [ c.58 , c.59 ]




ПОИСК





Смотрите так же термины и статьи:

Полимеры коллоидные

Полимеры химическая



© 2024 chem21.info Реклама на сайте