Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрохимия Электропроводность растворов

    Учение об электропроводности растворов обычно не включается в этот раздел, хотя формально оно является частью электрохимической кинетики, если учение об электролитах считать частью электрохимии, а не учения [c.606]

    Электрохимия изучает некоторые особенности свойств растворов электролитов, электропроводность растворов, процессы электролиза, работу гальванических элементов и электрохимическую коррозию металлов. [c.23]


    Значительный вклад в развитие электрохимии внесли также русские ученые. В. В. Петров (1761—1834) изучал электропроводность растворов, химические действия электрического тока, электрические явления в газах и т. п. С помощью созданного им крупнейшего для того времени химического источника тока в 1802 г. он открыл электрическую дугу. Б. С. Якоби (1801—1874) в 1834 г. изобрел электродвигатель, работавший на токе от химического источника. В 1838 г. он предложил гальванопластический метод (см. разд. У.П). П. Н. Яблочков (1848—1914) изобрел электродуговую лампу (1875 г., свеча Яблочкова ), работал над созданием химических источников тока, выдвинул (1877 г.) идею создания топливного элемента (см. разд. А.12). Н. А. Изгарышев (1884—1956) развил теорию химического источника тока, работал над проблемой защиты металлов от коррозии, открыл явление пассивности металлов в неводных растворах электролитов, и по праву считается одним из основателей электрохимии неводных растворов. А. Н. Фрумкин (1895—1971) разрабатывал вопросы кинетики электрохимических процессов, развил теорию строения двойного электрического слоя. [c.233]

    Электрохимия. Изучает взаимосвязь химических и физических процессов в растворах с электрическими явлениями. Делится в свою очередь на изучение электропроводности растворов и изучение электродвижущих сил, т. е. возникновения разности потен-. циалов при химических процессах. [c.6]

    Можно отметить два больших раздела электрохимии учение об электропроводности растворов электролитов и учение об электродвижущих силах.  [c.344]

    Электрохимия рассматривает электропроводность растворов, работу гальванических элементов, процессы электролиза. [c.255]

    В книге рассмотрены основные понятия электрохимии и современные методы исследования кинетики электродных процессов. Описаны классические и релаксационные методики изучения электродной поляризации. Представлены специальные и вспомогательные приборы, применяемые в электрохимических исследованиях. Уделено внимание особенностям лабораторного эксперимента. В задачах установлены закономерности фарадеевских реакций, электропроводности растворов, чисел переноса, э. д, с. элементов, электрокапиллярных явлений и строения двойного электрического слоя, диффузионной кинетики и полярографии, механизма образования на электродах новой фазы, пассивности и коррозии металлов. [c.2]

    Развитие отечественной электрохимии началось с выдающихся исследований В. В. Петрова по электролитическому разложению воды и других жидкостей (1801 г.). Он же впервые получил металлы электролизом их окислов. Вскоре (1805 г.) Ф. Ф. Гротгус разработал теорию электропроводности растворов (переход протонов от ионов к молекулам воды). Наряду с этим он заметил, что ... расщепление молекул. .. происходит до всякого действия электрического тока (1818 г.). В этом предположении содержится предвидение основных идей теории электролитической диссоциации. [c.7]


    Наиболее четко позиции Киевской электрохимической школы были сформулированы в докторский диссертации В. А. Плотникова Исследования по электрохимии неводных растворов , в которой отрицается идея классификации растворителей, основанная на диссоциирующей способности . В качестве основного условия образования электролитного раствора В. А. Плотников выдвинул химическое взаимодействие между компонентами раствора. Разделяя этот основной тезис химической теории растворов, В. А. Плотников широко использует весь арсенал методов физической теории растворов и именно это позволило ему решить основную проблему теории электролитных растворов того времени, дав в высшей степени убедительное и очевидное объяснение так называемым аномальным кривым электропроводности. [c.174]

    Начало изучению электропроводности неводных растворов было положено работой И, А. Каблукова [Об электропроводности хлористого водорода и серной кислоты в различных растворителях, ЖРФХО, 22, отд. I, 79 (1890)] затем оно продолжалось в работах других советских ученых [А. И. Бродский, Ф. Трахтенберг, ДАН, 2, 490 (1934) В. А. Плесков, ЖФХ, 10, 601 (1938)1. В связи с этим большое значение имели также работы В. А. Плотникова (Исследования по электрохимии неводных растворов, Киев, 1908) и его учеников по изучению ионогенных комплексных соединений, способных электролитически диссоциировать в данной системе и обнаруживаемых методами физико-химического анализа [М. И. Усанович, Сборник, посвященный юбилею В. А. Плотникова, Киев, 1935 Я. А. Ф и а л к о в, Успехи химии, 15, 485 (1947) Е. Я. Г о р е н б е й н, ЖФХ, 20, вып. 6, 547 (1946)]. (Прим. ред.) [c.167]

    Используя данные таких таблиц, включенных в справочники по электрохимии, а также приведенное выше выражение, можно рассчитать электропроводность любого раствора. Полученная точность в большинстве случаев достаточна для оценки экспериментальных условий, необходимых для проведения измерений. Такие расчеты полезны также для предсказания изменений электропроводности, которые могут наблюдаться в ходе титрования. Электропроводность раствора может заметно изменяться в ходе титрования в связи с добавлением или уда- [c.406]

    В дальнейшем изучению этой зависимости менаду электропроводностью и вязкостью растворов, проявляющейся именно в органических растворителях, занимались многие химики, из которых в первую очередь следует упомянуть Вальдена (1906 г. и далее). Изучая электропроводность иодистого тетраэтиламмония в нескольких десятках растворителей, он нашел, что произведение электропроводности на вязкость при бесконечном разбавлении представляет постоянную величину. Вальдену принадлежит также обстоятельное изучение зависимости диссоциации электролитов от диэлектрической постоянной органических растворителей. Полученные результаты были обобщены им в монографии Электрохимия неводных растворов (Лейпциг, 1924 г.). [c.134]

    Величина электропроводности растворов имеет большое значение для условий протекания электрохимических процессов. На ее основе возможно сделать рациональный выбор состава электролита, при котором непроизводительные затраты электроэнергии будут минимальными. Знание электропроводности растворов необходимо при составлении энергетических и тепловых балансов электролизеров и химических источников тока. С величиной электропроводности связана рассеивающая способность гальванических ванн, т. е. возможность получения равномерного осадка металла на участках покрываемого изделия, различно удаленных от анода. Однако использование данных по определению электропроводности не ограничивается электрохимией. Кондуктометр и я находит самое разнообразное применение как метод научного исследования, химического анализа и производственного контроля. [c.128]

    Величина электропроводности растворов имеет большое значение для протекания электрохимических процессов. На ее основе можно сделать рациональный выбор состава электролита, при котором непроизводительные затраты электроэнергии будут минимальными. Знание электропроводности растворов необходимо при составлении энергетических и тепловых балансов электролизеров и химических источников тока. С величиной электропроводности связана рассеивающая способность гальванических ванн, т. е. возможность получения равномерного осадка металла на участках покрываемого изделия, различно удаленных от анода. Однако использование данных по определению электропроводности не ограничивается только электрохимией. Кондуктометрия находит самое широкое применение как метод химического анализа, производственного контроля и научного исследования. Она обладает рядом преимуществ перед химическими методами анализа, так как позволяет определить содержание индивидуального вещества в растворе простым измерением электропроводности раствора. Для этого нужно только иметь предварительно вычерченную калибровочную кривую зависимости электропроводности от концентрации вещества. Кроме того, в процессе измерения электропроводности анализируемый раствор практически не изменяется, благодаря чему можно проводить повторные измерения и, сохранив его, в любое время проверить полученные результаты. [c.104]


    Электрохимия составляет часть физической химии, основоположником которой является великий русский ученый М. В. Ломоносов. Развитие отечественной электрохимии начинается с выдающихся исследований В. В. Петрова по электролитическому разложению воды и других жидкостей (1801). Он же впервые получил металлы при электролизе их окислов. Вскоре после этих открытий (1805) Ф. Ф. Гротгус разработал теорию электропроводности растворов, с помощью которой теперь объясняют электропроводность кислот и щелочей (перескок протонов между ионами и молекулами воды). Наряду с этим Ф. Ф. Гротгус [c.17]

    Развитие электрохимии позволило русскому ученому Гротгусу создать первую теорию электропроводности растворов (1806 г.). В основе этой теории лежало представление о цепном расположении положительных и отрицательных полюсов в частицах воды. [c.12]

    Электролиз расплавленных солей подчиняется тем же основным законам, которые выведены для электрохимии водных растворов. Ток через расплавленные соли проходит так же, как и в водных растворах электролитов, с помощью ионов, поэтому электролиз солевых расплавов подчиняется законам Фарадея. Электропроводность солевых расплавов при высоких температурах несколько выше, чем электропроводность водных электролитов при комнатной температуре. Положение металлов в ряде напряжений для расплавленных солей [364] и в водных электролитах принципиально мало различается между собой. Как и в водных растворах, наиболее отрицательные значения электродных потенциалов имеют щелочные и щелочноземельные металлы более положительные потенциалы имеют сурьма, висмут, медь, ртуть и серебро. Электродные потенциалы одних и тех же металлов в расплавленных хлоридах, бромидах и йодидах сравнительно мало отличаются. Это объяснимо, если считать, что электродные потенциалы металлов в основном определяются, электронным строением атомов, т. е. положением их в периодической системе элементов Д. И. Менделеева. Как и в водных электролитах, электроосаждение металлов из солевых расплавов протекает с поляризацией, однако степень ее значительно меньше, чем в водных растворах. Электролиз расплавленных солей проводится при высоких температурах в электролизерах, обычно имеющих огнеупорную футеровку, диафрагму, отделяющую анодное пространство от катодного. В ряде случаев необходима герметизация электролизера или защитная атмосфера. [c.102]

    Все основные законы электрохимии водных растворов применимы и к расплавленным средам. Однако, отсутствие воды, как растворителя, и высокая температура электролиза вносят в процессы при электролизе расплавленных солей некоторые особенности. Электропроводность расплавленных электролитов выше, чем в водных растворах. Выход же по току, как правило, меньше, что связано, главным образом, с явлением растворимости выделенного на катоде металла в электролите с последующим окислением этого металла на аноде или на поверхности электролита. Выход по току может понижаться также за счет испарения катодного металла или взаимодействия его с материалами футеровки ванн при высоких температурах электролиза. [c.56]

    Электрохимия изучает связь между электрической и химической энергией, свойства растворов электролитов, электропроводность растворов, процессы электролиза, работу гальванических элементов, электродные процессы и электрохимическую коррозию металлов. [c.5]

    Следует иметь в виду, что величина а, а следовательно, и i зависят от температуры, и поэтому найденный коэффициент Вант-Гоффа имеет смысл только для температуры, при которой выполнены измерения. При переходе от одного растворителя к другому степень диссоциации растворенного вещества изменяется, а следовательно, изменяется и коэффициент Вант-Гоффа. Наиболее точный путь определения а и i — это расчет, основанный на результатах измерения электропроводности растворов. Этот метод рассматривается в электрохимии. [c.99]

    Большое значение для аналитической химии имели работы Ивана Алексеевича Каблукова (1857—1942) по исследованию электропроводности растворов. В области электрохимии невод-чых растворов И. А. Каблуков изучил ряд вопросов зависимость степени диссоциации растворенного вещества от свойств [c.29]

    Наряду с процессами электролиза электрохимия изучает химические источники электрической энергии, электропроводность растворов, вопросы коррозии металлов, электрохимические способы получения важных для народного хозяйства веществ и т. д. [c.146]

    Для незаряженной молекулы в сильноразбавленных растворах коэффициенты активности стремятся к единице однако в случае ионов дело обстоит иначе. Согласно теории сильных электролитов (П. Дебай, Е. Хюккель, 1923.), любой ион в растворе (независимо от того, происходит ли он из сильного или слабого электролита) стремится окружить себя атмосферой разноименных ионов. Это изменяет подвижность иопа (что в свою очередь влияет на электропроводность раствора), а также и его химическое каталитическое действие. Аналогичный эффект производят и посторонние электролиты, добавляемые к раствору, например к буферным растворам (солевые эффекты). Теория сильных электролитов указывает методы работы в условиях, в которых эти эффекты можно контролировать (при постоянной ионной силе) и для оценки коэффициентов активности (см. пособия по электрохимии). [c.212]

    Здесь прежде всего должны быть упомянуты исследования по электрохимии неводных растворов галогенидов сурьмы и мышьяка, выполненные В. А. Плотниковым совместно с М. И. Усановичем и О. К. Кудрой. Эти работы позволили установить однозначное соответствие между концентрационной зависимостью электропроводности и составом образующихся в системе комплексных и молекулярных соединений. [c.175]

    В книге изложены основы следующих методов кондуктометрии, потен-ииометрии, полярографии, амперометрии, кулоиометрии. Описанию каждого метода предпослана теоретическая часть, где в сжатой форме даны положения электрохимии, относящиеся к данному разделу (электропроводность растворов электролитов, электродные потенциалы, поляризация и электролиз растворов). [c.2]

    Обширные исследования электродных потенциалов (а так)](е электропроводности растворов) в жидких аммиаке и двуокиси серы н других неводных растворителях были выполнены советскими учеными [В. А. Плесков, Успехи химии, 16, 254 (1947) А. И. Бродский, Исследования по термодинамике и Электрохимии растворов, Техиздат УССР, 1931 А. И. Шатенштейн, Сжиженные газы как растворители, т. I, Госхимтехиздат, М., 1934 т. П, Оборонгиз, М., 1939 Н. А. Изгарышев, Электрохимия и ее техническое применение, ГНТИ, Л., 1931, стр. 92 ]. Прим. ред.) [c.337]

    Большое значениё Для дальнейших успехов электрохимии имели исследования электропроводности растворов. Работами Гитторфа (1853 г.) было установлено, что ионы в растворе движутся под действием электрического поля с различными скоростями, определяемыми природой ионов. [c.13]

    В электрохимии подвижность ионов выражают как отношение скоростей движения ионов под действием электри ческого поля к его напряженности, умноженное на число Фарадея. Сумма подвижностей аниона и катиона равна эквивалентной электропроводности раствора электролита при бесконечном разбавлении. [c.53]

    Излагается курс физической и коллоидной химии для сельскохо-эяйст еиных вузов. Агрегатные, состояния вещества, современное учение о растворах, явления диффузии и осмоса тургора и плазмолиза, электропроводность растворов, основы химической термодинамики, и термохимии, вопросы химической кинетики и катализа и химических равновесий, электрохимия рассмотрены с точки зрения их приложения биологии и сельском хозяйстве. Рассмотрены также коллоидно-химические свойства белков, роль свободной воды в коллоидах, коллоидно-химические свойства протоплазмы, свойства коллоидов почвы. [c.2]

    Успешно продолжались в Советском Союзе и работы по изучению электрохимии неводных растворов В. А. Плотниковым и учениками его школы — В. А. Избековым, Я. А. Фиалковым, О. А. Кудра и др. [33]. Особенно важны их работы по электропроводности в связи с теорией ком-плексообразования. Эти исследования внесли большой вклад в химию комплексных соединеиий. [c.16]


Библиография для Электрохимия Электропроводность растворов: [c.982]    [c.982]    [c.984]   
Смотреть страницы где упоминается термин Электрохимия Электропроводность растворов: [c.116]    [c.7]    [c.191]    [c.18]   
Смотреть главы в:

Физическая и коллоидная химия -> Электрохимия Электропроводность растворов




ПОИСК





Смотрите так же термины и статьи:

Электропроводность растворов ПАВ

Электрохимия

Электрохимия Электропроводность



© 2025 chem21.info Реклама на сайте