Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Азотсодержащие пероксиды

    Разработаны новые окислительные системы на основе пероксида водорода и комплексов переходных металлов (ванадия, молибдена, вольфрама), активные в окислении сернистых соединений. Синтезированы новые ванадиевые анионные пероксокомплексы с различными азотсодержащими гетероциклическими лигандами (пиридин, бипиридин, пиразин др.). Изучение состава и строения полученных пероксокомплексов проводили методами элементного анализа, ИК- и ЯМР-спектроскопии, а также рентгеноструктурного анализа [c.61]


    Органические соедииеиия, в состав которых входит азот, весьма разнообразны число известных типов значительно превышает число типов кислородных соединений. Можно указать и самые общие причины этого азот может входить в состав органических соединений в разных валентных состояниях он может быть связан с углеродным скелетом не только простой и двойной связью (как кислород), но также и тройной связью в состав азотсодержащих функций могут входить, кроме азота, и другие элементы (кислород, иногда галогены) наконец, существуют разнообразные соединения с цепями азота из двух-трех атомов (среди кислородных соединений лишь в пероксидах имеются два непосредствен но связанных атома кислорода). [c.217]

    Инициаторы, как и катализаторы, ускоряют реакции полимеризации, но в отличие от катализаторов необратимо расходуются в процессе. Инициаторы (органические пероксиды, гидропероксиды и азотсодержащие соединения) в ходе реакции распадаются на реакционноспособные радикалы, которые входят в состав молекул полимера в виде конечных групп (цепная радикальная полимеризация).  [c.270]

    Наиболее общий метод получения Ы-оксидов ароматических азотсодержащих гетероциклов их окисление, например, пероксидом водорода в смеси с уксусной кислотой или уксусным ангидридом (реакция 1). [c.99]

    Тонкослойную и бумажную хроматографию широко применяют в химии, биохимии, фармакологии, медицине и биологии. Обширные сведения о значениях Rf опубликованы в монографии [81], где приведены данные для спиртов, алкалоидов, аминов, аминокислот, карбоновых кислот, неорганических анионов и катионов, азотсодержащих гетероциклов, производных нуклеиновых кислот, альдегидов, кетонов, флавоноидов, пероксидов, фенолов, пигментов, пуринов, стероидов, серусодержащих соединений, витаминов, углеводов, антибиотиков, наркотиков, углеводородов и липидов. [c.554]

    Это объясняется снижением электронодонорных свойств заместителей, приводящим к уменьшению нуклеофильности азота в цепи олигоэфира. Процесс отверждения ненасыщенных олигоэфиров без ускорителей полимеризации в цепи в присутствии окислительно-восстановительной системы (типа пероксид бензои-ла-диметиланилин) протекает в течение нескольких недель, при этом сетчатые полимеры характеризуются нестабильными физико-механическими показателями и теплостойкостью. Значительное ускорение процесса отверждения и высокие физико-.механические показатели наблюдаются при использовании азотсодержащих олигоэфиров в сочетании с пероксидом бензоила. [c.119]


    Атом бора можно заменить на ЫНг-группу [68]. Это превращение можио осуществить с помощью хлорамина или гидрокснламнн-О-суль-фокислоты. Механизм этой реакции очень похож иа механизм окисления борорганических соединений пероксидом водорода. Азотсодержащие [c.98]

    Органические соединения, воду в которых можно определять прямым титрованием реактивом Фишера кислоты одноосновные, многоосновные, оксикислоты, аминокислоты, сульфокислоты, ангидриды и галоидангидриды спирты одноатомные, многоатомные, фенолы эфиры простые и сложные, ортоэфиры, эфиры неорганических кислот, карбаматы, лактоны альдегиды и ке-тоны устойчивые, ацетали углеводороды насыщенные, ненасыщенные, ароматические алкилгалогениды пероксиды, гидропероксиды, диалкилпероксиды азотсодержащие соединения нейтральные, основные и слабокислые, амиды, анилиды, амины (/С 2,4-10 ), аминоспирты (К пуриновые про- [c.277]

    При восстановительном расщеплении циклогексенильного соединения (26) образуется 3,5-диметилпиразол (27) схема (3) . Бензимидазол можно окислить перманганатом, бихроматом или пероксидом водорода в имидазолдикарбоновую-4,5 кислоту, что показывает высокую устойчивость имидазольного цикла.. Чногие триазолы и тетразолы перегоняются без разложения, и все же введение третьего (или четвертого) атома азота в пятичленное кольцо безусловно снижает его стабильность. Сама циклическая система обычно устойчива к окислению, но бензотриазол взрывает при 160 °С при 2 мм рт. ст. галогениды 1,2,3-триазола с больщой силой взрывают выше 260°С. Тетразол взрывчат при нагревании выше точки плавления азотсодержащие заместители еще сильнее понижают термическую устойчивость, и, например, если концентрация водных растворов катиона тетразолдиазония превышает 2 %, они детонируют уже при 0°С. Однако к действию [c.436]

    Хорошо известно, что однодетерминантное представление волновой функции принципиально не применимо для моделирования гомолитического расщепления химической связи [62]. Корректное описание радикальной пары на расстояниях от ковалентного связывания (молекулы) до изолированных радикалов возможно с помощью методов интенсивного учета электронной корреляции, что сильно ограничивает размеры исследуемых соединений. Поэтому построение даже фрагментов поверхности потенциальной энергии (ППЭ) распада пероксида требует больших временных и компьютерных ресурсов и к настоящему моменту времени проведено только для пероксида и триоксида водорода [63—68]. Другим подходом к исследованию механизма гомолиза является кванто-во-химическое определение энергий активации и тепловых эффектов различных направлений распада пероксида, позволяющее ограничиться расчетом стационарных точек (равновесные структуры и переходные состояния) на ППЭ. С помощью этого подхода изучены механизмы распада диоксиранов [69] и азотсодержащих пероксидов на примере HOONO [70], HOONO2 и Me (0)00N02 [71-73]. [c.182]

    Кислородсодержащие соединения. Проблема выделения кислородсодержащих соединений из нефтяных фракций наиболее полно разработана для соединений кислого характера (кислот, фенолов), но недостаточно для нейтральных соединений (пероксидов, спиртов, эфиров, альдегидов, кетонов и иолигетероатомных соединений). Нейтральные соединения выделяются из смесей с углеводородами хроматографически, однако в концентраты наряду с кислородсодержащими попадают сбру- и азотсодержащие соединения. [c.91]

    Создание кумольного метода синтеза пропиленоксида стало возможным благодаря решению двух основных проблем, возникающих при применении ГПК в качестве эпоксидирующего агента. Во-первых, в результате использования качественно нового способа удалось повысить селективность реакции (традиционные способы увеличения выхода пропиленоксида — изменение молярного отношения пропилен ГПК, порционная подача гидро-пероксида— оказались непригодными для промышленного использования ввиду значительного ухудшения технико-экономических показателей процесса [197, 198]). Для этого была предложена новая каталитическая система, в которой используется модифицированный электронодонорными лигандами (азотсодержащие соединения, спирты) пропандиолат молибденила [А. с. 1066995 СССР, 1984]. Эпоксидирование пропилена ГПК проводится при температуре 115—120 °С, молярном отношении пропилен ГПК = 5 1, концентрациях молибденового катализа-тора б-Ю моль на 1 моль ГПК, промотора 2 моль на 1 моль катализатора, пропанола-2 до 10% (масс.) и времени реакции до 90 мин. Селективность образования оксида пропилена в расчете на прореагировавший ГПК составляет 88—90% (мол.), а в расчете на пропилен — выше 98% (мол.). Конверсия ГПК при этом достигает 99,5%. В отсутствие промотора и пропанола-2 процесс эпоксидирования пропилена ГПК протекает с невысокими конверсией ГПК (75—80%) и селективностью по ГПК [40—50% (мол.)]. [c.239]

    В томе 4 перевода настоящего многотомного издания, являющегося по существу энциклопедией органической химии, рассмотрены карбоновые кислоты и их производные — moho-, ди- и поликарбоновые кислоты, галоген-, гидрокси-, оксо- и азотсодержащие замещенные карбоновых кислот, амиды и родственные соединения, производные диоксида углерода, а также пероксикислоты и пероксиды ацилов. В этот же том включены введение в химию фосфорорганических соединений, а также главы, посвященные фосфинам, фосфористой, фосфо-нистой, фосфинистой кислотам и их производным (гл. 10.1 — 10.3). [c.4]


    Систематическое исследование направлений полимеризации 24 гексатриенов-1,3,5 различными методами, в том числе ИК-и ПМР-спектроскопическими, показало [2, с. 173], что перок-сидное инициирование обусловливает образование линейных полимеров по типу 1,6-присоединения. Такой вариант проведения процесса наиболее приемлем при склеивании. Поэтому адгезионные свойства гексатриенов изучены на примерах индивидуальных мономеров или их растворов, содержащих 0,5 % пероксидов бензоила или дикумила. Как следует из табл. 6, соответствующие адгезивы обеспечивают высокие значения прочности клеевых соединений, составляющие 7,8—21,4 МПа для стали 3 и 1,7—3,4 кН/м при креплении к ней резины на основе полиизопропенового эластомера СКИ-3 [114]. В последнем случае относительная узость интервала значений сопротивления расслаиванию обусловлена когезионным характером разрушения адгезионных соединений по приповерхностным слоям субстратов, упрочненным продиффундировавшим в них адгезивом. Наибольшей адгезионной способностью характеризуются, как и следовало ожидать, азотсодержащие адгезивы. Если в среднем сопротивление отрыву резино-сталь-ных соединений составляет около 10 МПа, то минимальное значение равно 12,7 МПа, а максимальное — 21,4 МПа. Этот факт свидетельствует о справедливости исходных теоретических представлений, определяющих выбор химической природы адгезивов. [c.27]

    В случае азотсодержащих олигоэфиракрилатов, например три-метакрилаттриэтаноламина, наряду с пероксидами для инициирования вулканизации пригодны галогенсодержащие соединения, например гексахлор-и-ксилол. Получаемые вулканизаты наряду с высокими прочностью и стойкостью к термоокислительной деструкции характеризуются низкими гистерезисными потерями, что особенно важно при получении шинных резин [74]. [c.305]


Смотреть страницы где упоминается термин Азотсодержащие пероксиды: [c.188]    [c.362]    [c.91]    [c.91]    [c.51]    [c.51]    [c.343]   
Смотреть главы в:

Физическая химия органических пероксидов -> Азотсодержащие пероксиды




ПОИСК





Смотрите так же термины и статьи:

Пероксиды



© 2024 chem21.info Реклама на сайте