Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Родственные синтетические процессы

    Далее мы рассмотрим некоторые сложные эфиры, играющие важную роль в биологических процессах. Поскольку полимеры, содерн ащие амидную п сложноэфирную связи, очень важны в нашей повседневной жизни, мы изучим некоторые из этих синтетических полимеров. В конце главы мы обсудим спектральные свойства карбоновых кислот и родственных соединений. [c.102]


    РОДСТВЕННЫЕ СИНТЕТИЧЕСКИЕ ПРОЦЕССЫ [c.18]

    Родственные синтетические процессы 19 [c.19]

    При определении экономической эффективности комбинирования учитывают не только снижение затрат, но и повышение сложности управления предприятием и его организационной структуры. Комбинирование эффективно, если объединяют процессы, технологически родственные и основанные на комплексном использовании сырья, например производства продуктов из этилена, пропилена, бутиленов, смол пиролиза производства продуктов из ацетилена и аммиака и метанола производства синтетического каучука и метанола производства синтетического каучука и полибутилена при совместном получении дивинила и бутилена. Однако технико-экономические показатели резко ухудшаются при комбинировании разнохарактерных про- [c.31]

    Комбинирование нефтехимических производств эффективно в том случае, когда объединяются процессы, родственные с технологической точки зрения и основанные на комплексном использовании сырья. Например, комбинирование производства продуктов из этилена, пропилена, бутиленов, смолы пиролиза комбинирование производств ацетилена и аммиака или метанола комбинирование производства синтетического каучука и полибутилена при совместном производстве дивинила и бутилена и др. [c.94]

    Реактивы Гриньяра и родственные реагенты. Реакция, синтетическая ценность которой ограничена, состоит в соединении углеродистых остатков двух молекул алкил- или арилгалогенида при обработке натрием. Этот процесс, известный под названием реакции Вюрца, несомненно, включает в качестве промежуточных образований натриевые соединения. [c.228]

    Эта реакция родственна реакции 11-32 в том же смысле, в каком реакция 11-13 родственна реакции 11-15 [346]. Однако выходы здесь, как правило, низкие, и эта реакция имеет значительно меньшую синтетическую ценность. Если группа К способна изомеризоваться, то это обычно и наблюдается. Получены доказательства осуществления процесса как меж-, так и внутримолекулярным путем. То, что часто удается выделить диалкилфенолы, показывает, что по крайней мере частично реакция идет по межмолекулярному пути. Доказательство в пользу внутримолекулярного механизма заключается в следующем превращение оптически активного л-толил-агор-бути-лового эфира в 2-втор-бутил-4-метилфенол происходит с частичным сохранением конфигурации [347] и перегруппировка бензилфениловых эфиров (в присутствии А1Вгз или А1С1з) идет практически исключительно как орто-миграция [348]. Механизм здесь, по-видимому, аналогичен механизму реакции 11-13. По крайней мере в некоторых случаях реакция может идти и в отсутствие катализатора. Например, при простом нагревании до 250 °С фенилбензиловый эфир дает о- и и-бензилфенолы [349]. [c.376]


    Менее чем через 2 года полный синтез структуры 7, несмотря на устрашающую ее сложность, был завершен группой Шинкаи лаборатории фирмы Мерк Шарп и Дом (7с). Безусловно, этот синтез не может всерьез рассматриваться как альтернатива в общем-то довольно дешевому процессу микробиологического синтеза. Но именно благодаря синтетическим усилиям в этой области удалось разработать методы получения ряда родственных соединений и изотопно меченных аналогов 7 [7(1-Г , Эго, в свою очередь, обеспечило возможность проведения исследований, направленных на выяснение особенностей взаимодействия иммуномодуляторов с рецепторами соответствующих клеток, т.е. тех особенностей, без знания которых невозможен рациональный дизайн иммунодепрессантов, более простых по строению, чем Макроциклический лактон 7, но проявляющих требуемый спектр свойств. [c.17]

    Существует несколько подходов к составлению программы целенаправленного синтеза новых лекарственных препаратов. Весьма плодотворным оказался метод модифицирования структуры уже известных синтетических или природных лекарственных веществ (например, антибиотиков и стероидов), который позволил получить ряд ценных противомикробных и противовоспалительных средств и пероральных противозачаточных препаратов. По альтернативному методу берут небольшой фрагмент химической структуры известного лекарства, вводят его в молекулы других соединений и исследуют биологическое действие полученных веществ. При этом было найдено, в частности, что вещества, содержащие структурный фрагмент кокаина, сохраняют анестезирующие свойства. Знание структуры известного фармацевтического препарата, обладающего потенциально полезным побочным эффектом,- иногда позволяет усилить последний до уровня, приемлемого для терапевтических целей, одновременно ослабив основной эффект, присущий исходному препарату. Примером использования такого подхода может служить история создания сульфамидных диуретиков (мочегонных препаратов), которые появились в результате наблюдения, что противомикробное средство сульфаниламид обладает мочегонными свойствами. Имеется много примеров создания лекарств, оказывающих определенное влияние на протекание биологических процессов. Так, ампролий вылечивает кокцидиоз у цыплят, индюков и крупного рогатого скота за счет того, что он блокирует метаболизм витамина В в организме микроскопического паразита — кокцидия (т. е. ведет себя как антиметаболит ) и поэтому токсичен для него. Менее ясна связь между структурой и активностью в случае химических соединений, ингибирующих биологический процесс. Например, алкилирующие агенты, подавляющие рост раковых опухолей, не обязательно должны быть родственными по химическому строению. Синтезированы соединения, биологическая активность которых [c.401]

    Аденозинтрифосфат играет ключевую роль во внутреннем метаболизме. В 1941 г. Липманн предложил концепцию энергетиче-ски-богатых фосфатных связей для того, чтобы объяснить, почему кажется, что стандартная свободная энергия гидролиза АТР и других родственных фосфатов, например креатинфосфата, является существенно более высокой, чем стандартная свободная энергия гидролиза других фосфатов, таких как АМР [36]. Эту концепцию часто применяли при обсуждении реакций АТР [37]. В ряде случаев было заявлено, что АТР может запасать энергию, освобождающуюся в результате деградационных процессов метаболизма и может использовать запасенную энергию по мере необходимости для осуществления синтетических реакций. Недавно концепция энергетически-богатых фосфатных связей была подвергнута критической переоценке [38] и сделан вывод, что концепция Липманна применима лишь для замкнутых систем, с энер-гетически-связанными реакциями. Поскольку реальные организмы являются открытыми системами, то к ним, строго говоря, не может быть применена концепция энергетически-богатых связей и, несмотря на то, что эфиры фосфатов могут быть расположены в порядке уменьшения стандартной свободной энергии их гидролиза, это может служить лишь указанием на направление трансфосфо-рилирования в замкнутой системе. [c.147]

    Ряд недавно описанных синтетических подходов к хинолинам и изохинолинам основан на использовании разнообразных процессов. Например, при озонолизе индена образуется гомофталевый альдегид, который при взаимодействии с аммиаком превращается в результате замыкания цикла в полностью ароматический изохинолин [122]. Другой подход к генерированию родственного дикарбонильного соединения связан с литиированием по боковой цепи циклогексили-мина орото-метилбензальдегида с последующим ацилированием литиевого производного амидом Вайнреба [123]. [c.188]

    Это соединение родственно так называемым комплексным металлоорганическим катализаторам (которые открыли Циглер, Хольцкамп, Брейль и Мартин [304—308, 317]), представляющим собой высокоактивные каталитические системы для ряда самых различных процессов полимеризации (линейный полиэтилен низкого давления, изотактический полипропилен и поли-а-олефины, различные типы полибутадиена, синтетический натуральный каучук , циклододекатриен из бутадиена). Такие катализаторы в общем виде могут быть получены путем смешения соединений металлов групп 1УБ—УПВ (а также и УШБ) с различными алкилметаллами, особенно с алкилпроизводными алюминия. В подобных смесях обычно происходит восстановление. С того времени, как были открыты эти новые катализаторы, им было посвящено множество публикаций самых различных авторов был открыт ряд интересных новых комплексных соединений, образующихся из алюминийорганических соединений и соединений других соответствующих элементов (в особенности Т1) [25, 32, 177, 194—197]. Обзор этой новой и довольно обширной области современного катализа не мог бы уложиться в рамки намеченного объема данной главы поэтому мы можем лишь сослаться на некоторые исследования, представляющие [c.296]


    До недавнего времени было описано лишь немного примеров реакций радикального присоединения карбоновых кислот и их производных к олефинам. Показано, что бромуксусный и родственные ему эфиры вступают в подобные реакции, причем успеху реакции способствуют резонансная стабилизация радикала СН2СООС3Н5 и относительное ослабление связи С—Вг. С другой стороны, было установлено [22], что в случае метилацетата первоначально получающийся радикал -СНзСООСНз не способен конкурировать с инициирующим цепь радикалом из перекиси в их реакциях с олефином, т. е. преимущественный процесс — развитие цени путем отрыва а-водородного атома от метилацетата. В недавней работе Аллен, Кедоген, Гаррис и Хей [31] преодолели эти трудности и предложили новый важный синтетический способ получения сложных эфиров с неразветвленной цепью. Выбраны были малоновый, циапуксусный и ацетоуксуспый эфиры. Такие соединения, как и можно было ожидать, подвергаются реакции замещения (8), и начальная реакция (6) протекает легко в результате выигрыша энергии при образовании соответствующего резонансно-стабилизованного радикала, например 3  [c.349]

    Кристаллизация и кристаллические структуры. 9. Электрические и магнитные явления. 10. Спектры и некоторые другие оптические свойства. 11. Радиационная химия и фотохимия, фотографические процессы. 12. Ядерные явления. 13. Технология ядерных превращений. 14. Неорганическая химия и реакции. 15. Электрохимия. 16. Аппаратура, оборудование заводов. 17. Промышленные неорганические продукты. 18. Экстрактивная металлургия. 19. Черные металлы и сплавы. 20. Цветные металлы и сплавы. 21. Керамика. 22. Цемент и бетон. 23. Сточные воды и отбросы. 24. Вода. 25. Минералогическая и геологическая химия. 26. Уголь и продукты переработки угля. 27. Нефть, нефтепродукты и родственные соединения. 28. Детонирующие и взрывчатые вещества. 29. Душистые вещества. 30. Фармацевтические препараты. 31. Общая органическая химия. 32. Физическая органическая химия. 33. Алифатические соединения. 34. Алициклические соединения. 35. Неконденсированные ароматические системы. 36. Конденсированные ароматические системы. 37. Гетероциклические соединения (с одним гетероатомом). 38. Гетероциклические соединения (более чем с одним гетероатомом). 39. Элементоорганические соединения. 40. Терпены. 41. Алкалоиды. 42. Стероиды. 43. Углеводы. 44. Аминокислоты, пептиды, белки. 45. Синтетические высокомолекулярные соединения. 46. Краски, флуоресцентные отбеливающие агенты, фотосенсибилизаторы. 47. Текстиль. 48. Технология пластмасс. 49. Эластомеры, включая натуральный каучук. 50. Промышленные углеводы. 51. Целлюлоза, лигнин и др. 52. Покрытия, чернила и др. 53. Поверхностно-активные вещества и детергенты. 54. Жиры и воска. 55. Кожа и родственные материалы. 56. Общая биохимия. 57. Энзимы. 58. Гормоны. 59. Радиационная биохимия. 60. Биохимические методы. 61. Биохимия растений. 62. Биохимия микробов. 63. Биохимия немлекопитающих животных. 64. Кормление животных. 65. Биохимия млекопитающих животных. 66. Патологическая химия млекопитающих. 67. Иммунохимия. 68. Фармакодинамика. 69. Токсикология, загрязнение воздуха, промышленная гигиена. 70. Пищевые продукты. 71. Регуляторы роста растений. 72. Пестициды. 73. Удобрения, почвы и питание растений. 74. Ферментация. [c.50]

    Фенолформальдегидные и родственные им синтетические смолы также способны вступать во взаимодействие с жидкими тиоколами и образовывать продукты, обладающие полезными свойствами. Смолы этого типа могут взаимодействовать с тиоколами только в процессе их приготовления или отверждения. Можно допустить, что при взаимодействии каучука и смолы между фенольными кольцами образуются мостики, состоящие из молекул жидкого тиокола. При этом на концевых 5Н-групп последнего удаляется водород, а активные метилольные — СНгОН — группы фенолоформальде-гидной смолы теряют гидроксил, в результате чего образуется соединение с моносульфидными связями и выделяется вода. [c.96]

    В 1960-е годы была обнаружена громадная генетическая изменчивость на уровне белков и соответственно ДНК. С помощью методов определения аминокислотных последовательностей удалось выявить различия между гомологичными белками разных видов, а также между родственными белками одних и тех же видов. Изучение генетического кода вскрыло новые источники изменчивости, нуждающиеся в дальнейшем исследовании. Огромное количество ДНК, обнаруженное в эукариотической клетке (разд. 2.3.1.1), породило вопрос о функции избыточной ДНК и возможной причине этого феномена. Связаны ли большое количество ДНК и ее значительная изменчивость с естественным отбором, как это предполагалось неодарвинов-ской теорией эволюции, или же на молекулярном уровне большее значение имеют случайные процессы Если бы решающим фактором был, как это предполагалось общепринятой синтетической теорией, отбор, то его действие испытывало бы огромное число сайтов ДНК. [c.21]


Смотреть страницы где упоминается термин Родственные синтетические процессы: [c.64]    [c.501]    [c.474]    [c.492]    [c.356]    [c.501]    [c.398]    [c.22]    [c.38]    [c.38]    [c.211]    [c.349]   
Смотреть главы в:

Органические реакции Сб.9 -> Родственные синтетические процессы

Органические реакции том 9 -> Родственные синтетические процессы

Органические реакции Сборник 9 -> Родственные синтетические процессы




ПОИСК







© 2025 chem21.info Реклама на сайте