Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Барий. Радий

    В свободном от комплексов растворе ионообменное сродство щелочноземельных металлов различно и увеличивается в ряду магний — кальций — стронций — барий — радий. Поэтому удовлетворительно разделение может быть осуществлено без использования комплексообразователей, повышающих коэффициент разделения. [c.310]

    Структура группы. Ко II группе относятся металлы бериллий, магний, кальций,стронций, барий, радий, с одной стороны, я цинк, кадмий, ртуть — с другой. Атомы их на внешнем слое содержат по 2 электрона. Поэтому они способны образовать положительно двухвалентные ионы и окислы общей формулы НО. Отрицательные ионы неизвестны. В образовании ионов электроны ближайшего внутреннего слоя не участвуют. [c.410]


    Комм. Сравните интенсивность взаимодействия с водой кальция, щелочных металлов (17.1.1, Оп. 2, 5, 7) и магния (17.2.1, Па). Как меняется восстановительная активность простых веществ по ряду бериллий — магний — кальций — стронций — барий — радий  [c.122]

    ЩЕЛОЧНОЗЕМЕЛЬНЫЕ МЕТАЛЛЫ бериллий, магний, кальций, стронций, барий, радий. Имеют на внеш. оболочке атома по диа -электрона, на предшествующей — по два [c.691]

    Общая характеристика металлов II группы. Сюда относятся металлы бериллий, магний, кальций, стронций, барий, радий, с одной стороны, и цинк, кадмий, ртуть — с другой. Атомы их на внешнем слое содержат по [c.356]

    Изменение стандартных потенциалов от —1,696 в у Ве до —2,92 в у Ка указывает на усиление восстановительной активности этих металлов в водных растворах, возрастающей от бериллия к радию. Бериллий и в меньшей мере магний отличаются по своим свойствам от остальных элементов группы. Бериллий окисляется кислородом при обычных температурах лишь с поверхности, поскольку образующаяся при окислении плотная защитная пленка ВеО мешает дальнейшей реакции. По этой же причине бериллий не реагирует с водой. Магний реагирует с водой, но весьма медленно, так что скорость реакции становится легко измеримой только при высоких температурах. Но все же магний считается металлом недостаточно устойчивым по отношению к влажному воздуху и к воде. Поэтому из чистого магния конструкционные детали не выполняются. Кальций, стронций, барий, радий окисляются кислородом воздуха очень активно и полностью, поэтому их, как и щелочные металлы, нужно [c.193]

    ПОДГРУППА НА (БЕРИЛЛИЙ, МАГНИЙ, КАЛЬЦИЙ. СТРОНЦИЙ, БАРИЙ, РАДИЙ) [c.327]

    СТРОНЦИЙ, БАРИЙ, РАДИЙ) [c.308]

    Во второй группе периодической системы находятся типические элементы (бериллий, магний), элементы подгруппы кальция (кальций, стронций, барий, радий) и элементы подгруппы цинка (цинк, кадмий, ртуть). [c.564]

    II группа, главная подгруппа бериллий, магний, кальций, стронций, барий, радий. Эти элементы, за исключением бериллия и магния, называют щелочноземельными, так как их гидроксиды обладают щелочными свойствами, а оксиды сходны с А Оа и оксидами других металлов, в прошлом называемых землями . [c.227]

    Различие в структуре второго наружного слоя у ряда элементов второй группы обусловливает существование двух подгрупп главной, включающей щелочно-земельные металлы (бериллий, магний, кальций, стронций, барий, радий) и побочно подгруппы, включающей элементы цинк, кадмий и ртуть. [c.113]

    Бериллий, магний, кальций, стронций, барий, радий — щелочноземельные металлы — составляют главную подгруппу [c.237]


    Добывание радия основано на процессе соосаждения. Урановые руды обрабатывают серной кислотой и добавляют коллектор—соли бария. Радий соосаждается вместе с сульфатом бария и таким способом отделяется от урана. Сульфат бария переводят в карбонат, который растворяют в кислоте, после чего разделяют радий и барий методом дробной кристаллизации или каким-либо другим способом. [c.200]

    Фактически при этом супруги Кюри использовали метод дробной кристаллизации, который был предложен Менделеевым для выделения из смеси РЗЭ индивидуального лантана (см. с. 87). Выполняя большое число кристаллизаций, достигали сильного обогащения бария радием — в 16 раз. Затем переводили хлориды в бромиды, например многократным упариванием (Ва, Ка)СЬ с НВг для удаления НС1, и подвергали дробной кристаллизации бромиды (это дороже, но эффективнее для разделения Ва и Ка). Советский химик Башилов предложил вводить в кристаллизуемую смесь добавки СаСЬ для репрессии ионизации [4] эффективность разделения повысилась. [c.224]

    Бериллий Магний Кальций Стронций Барий Радий [c.250]

    Кроме того, при сравнении свойств, например бария — радия (в химической и электронной аналогии которых никто не сомневается) и вольфрама — урана, нетрудно убедиться в несоответствии изменения порядковых номеров и массовых чисел (табл. 91). [c.286]

    В 1871 г. Д. И. Менделеев писал Можно ждать еще основных элементов, принадлежащих к I, II и III группам. Они должны обладать атомным весом около 210—230... Первый будет сходен с цезием, а второй — с барием Сходный с цезием франций был обнаружен в 1939 г., а элемент, похожий на барий,—радий открыли в 1898 г.  [c.276]

    Радий (1Кп]75 ) является гомологом щелочно-земельных металлов и ближайшим аналогом бария. Металлический радий впервые был получен электролизом расплава КаСЬ. Его получают также разложением азида Ка (N3)2 в вакууме при 180—250 °С. В компактном виде радий — серебристо-белый металл с плотностью 6,0 г/см и с температурой плавления около 960 С. В отличие от диамагнитного бария радий слабо парамагнитен (более легкий переход 1р для валентного электрона). [c.431]

    Эту подгруппу составляют бериллий, магний и щелочноземельные элементы (кальций, стронций, барий, радий). Некоторые свойства этих элементов приведены в табл. 13.2. [c.242]

    Берил- лий Магний Кальций Строн- ций Барий Радий [c.26]

    Берил- Маг- Каль- Строн- Барий Радий [c.341]

    К первой группе относятся элементы, атомы которых проявляют постоянную валентность. Например, водород, щелочные металлы (литий, натрий, калий, рубидий, цезий, франций) всегда одновалентны кислород, щелочноземельные металлы (кальций, стронций, барий, радий) всегда двухвалентны алюминий всегда трехвалентен. [c.26]

    Русское название Бериллий Магнии Кальции Стронций Барии Радии [c.187]

    Осаждение щавелевой кислотой. Щавелевая кислота образует малорасгворнмые оксалаты с катионами многих металлов. Оксалат аммония при pH —8 полностью осаждает ионы кальция, стронция, скандия, иттрия, лантана, редкоземельных элементов, актиния, железа, золота, висмута, индия, олова, ниобия, тантала частично осаждает ионы лития, бериллия, магния, бария, радия, титана, циркония, гафния, тория, марганца, кобальта, никеля, ртути, таллия и свинца. При некоторых условиях осаждаются также ванадий и вольфрам. При pH 3—4 полностью осаждаются ионы кальция, стронция, скандия, иттрия, лантана, редкоземельных элементов, актиния, тория и золота неполностью осаждаются ионы бария, тантала, марганца, кобальта, никеля, меди, серебра, цинка, кадмия, олова, свинца и висмута. [c.98]

    Особенно эффективными оказались хроматографические методы, которые в последние годы часто используются для окончательного разделения радия и бария после предварительного получения обогащенных радием препаратов (дробной кристаллизацией или осаждением). Процесс разделения заключается обычно в пропускании радиево-бариевого раствора через колонку при таких условиях, чтобы происходило поглощение радия. В этом случае первые порции элюата будут обогащены барием. Радий с колонки удаляют обработкой минеральной кислотой, элюат разбавляют и повторяют процесс на свежей колонке. Разделение радия, бария и стронция на смоле Дауэкс-50 элюированием раствором цитрата аммония основано на различии констант диссоциации нитратных комплексов этих элементов. В настоящее время указанный метод является одним из лучших методов выделения радия. [c.484]

    На рис. 8.5 приведена схема дробной кристаллизации хлористого бария-радия. Для этой системы ) = 4, а коэффициент обогащения Kv = 2. Это значит, что при выделении в осадок 7з находящегося в растворе хлористого бария (макрокомпонента) с ним выделяется /з находящегося в растворе радия (микрокомпонента). [c.213]

    В зависимости от зарядов ионов, замещающих друг друга, различают изовалентные и гетеровалентные замещения. В изовалентном замещении участвуют ионы с одинаковыми электрическими зарядами и близкими ионными радиусами, например, ионы калия, аммония, рубидия, цезия взаимозаменяемы также ионы стронция, бария, радия, магния и железа (П). При гетеровалентном изоморфизме нзаимоза-мещаемы разновалентные ионы равных или близких ионных радиусов. При этом различия в ионных радиусах могут быть значительно большими, чем при изовалентном изоморфизме. Например, ионы Li" можно заместить ионами Mg + (ионные радиусы одинаковы — 0,78 А). Замещаются также ионы Na+ ионами Са +, хотя ионный радиус натрия 0,98 А, а кальция 1,06 А. С другой стороны, ионный радиус меди (I) и натрия соответственно 0,96 и 0,95 А, но медь (I) образует ковалентные соединения, натрий — ионные, поэтому смешанные кристаллы таких медных и натриевых солей не образуются. Ионы с близкими ионными радиусами образуют изоморфные ряды соединений. Чем ближе величины ионных радиусов, тем легче катионы образуют изоморфные соединения. [c.78]


    Последний щелочный элемент (франций) начинает седьмой период. Этот элемент не представлен в природе и был искусственно синтезирован. Валентный электрон этого элемента находится в 75-состоянии. Седьмой элемент заполняется подобно шестому. Внешние оболочки бария и актиния подобны таковым бария (радия) и лантана (актиния). Соответственно лантанидам существует четырнадцать актинидов, завершаемых 103 элементом — лауренсием. Электронные оболочки синтезированного в СССР 104 элемента подобны оболочке гафния, а оболочка 106 элемента, также синтезированного в СССР, подобна оболочке вольфрама. В последнее время в СССР был синтезирован 107 элемент. Седьмой период должен завершиться на 118 элементе, который должен быть аналогом радона. [c.319]

    По данным авторов работы [160], концентрации металлов в речной воде после ее обработки коагулянтами, осветления и фильтрования на песчаных фильтрах сни>ьаются в среднем железа и марганца на 65%, никеля и меди — на 50%, свинца и хрома — на 30%. По данным других авторов [161], после обработки речной воды известью и солями железа, 6-часового отстаивания и фильтрации через песчаные и сорбционные фильтры пятивалентный мышьяк удаляется на 98%, кадмий — на 95%, ртуть и трехвалентный мышьяк — на 60—90%, а барий, радий и селен — менее чем на 60%. [c.230]


Смотреть страницы где упоминается термин Барий. Радий: [c.4]    [c.258]    [c.280]    [c.83]    [c.68]    [c.68]    [c.210]    [c.68]    [c.245]    [c.89]   
Смотреть главы в:

Химические свойства неорганических веществ 2004 -> Барий. Радий

Химические свойства неорганических веществ Изд.3 -> Барий. Радий

Химические свойства неорганических веществ -> Барий. Радий

Химические свойства неорганических веществ Изд5 -> Барий. Радий




ПОИСК





Смотрите так же термины и статьи:

Барий определение в радии

Бария аминобензоат эманирующая соосаждение со следами радия

Бария хлорид носитель при осаждении радия

Бериллий, магний, кальций, стронций, барий и радий

Бериллий, магний, кальций, стронций, барий, радий (IIA группа)

Главная подгруппа II группы Строение. атомов и общие свойства. Бериллий Магний. Кальций. Цемент Бетонный за вод-автомат. История вяжущих материалов. Жесткость воды Стронций и барий. Открытие радия

Дробная кристаллизация хлористого радия и бария

Кальций, стронций, барий и радий

Кон ради

Магний, кальций, стронций, барий и радий

Подгруппа I1A (бериллий, магний, кальций, стронций, барий, радий)

Радий

Радий отделение от бария

Радия амальгама бария

Радия амальгама броматом бария

Радия амальгама бромидом бария

Радия амальгама нитратом бария

Радия амальгама осаждение ацетатом бария

Радия амальгама хлоратом бария

Радия амальгама хлоридом бария

Радой

Стронций, барий и радий

Стронций, барий, радий и их соединения

ЩЕЛОЧНОЗЕМЕЛЬНЫЕ МЕТАЛЛЫ И МАГНИЙ Кальций, стронций, барий, магний (радий) Щелочноземельные металлы—кальций, стронций, барий

Щелочноземельные элементы также Барий, Кальций, Радий

Электролизер для разделения радия и бария

Элементы ПА группы бериллий, магний, кальций, стронций, барий и радий



© 2024 chem21.info Реклама на сайте