Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Конформационный набор

    Повышение индекса вязкости масел при добавлении вязкостных присадок можно объяснить следующим образом. Под влиянием колебательно-вращательных движений макромолекулы полимера принимают в растворах самые разнообразные формы. В разбавленных растворах макромолекулы менее зависят друг от друга в своем тепловом движении, поэтому конформационный набор их весьма разнообразен. При этом вязкость разбавленных растворов вязкостных присадок мало зависит от температуры, и загущенные масла имеют высокий индекс вязкости. С увеличением концентрации вязкостных присадок в маслах расстояние между макромолекулами быстро сокращается, появляется межмолекулярное взаимодействие и набор конформаций, принимаемых макромолекулами, обедняется. Поэтому максимум значения индекса вязкости соответствует определенному значению концентрации вязкостной присадки. Дальнейшее увеличение концентрации вязкостной присадки приводит к снижению индекса вязкости загущенных масел. [c.144]


    Механизм влияния кристаллизации на температуру размораживания сегментальной подвижности в аморфных областях полимера рассмотрен Манделькерном [45]. В процессе образования кристаллитов в образующейся кристаллической фазе заметно возрастает плотность полимера, что приводит к деформации аморфных областей, уменьшению возможного конформационного набора для находящихся в них макромолекул и к увеличению времени релаксации процесса их сегментальной подвижности. В связи с этим представляет интерес оценка характера зависимости температуры размораживания сегментальной подвижности в аморфной фазе полимера от степени его кристалличности 2.6]. Для этого рассмотрим 1 моль сегментов аморфной фазы, занимающий объем V. В процессе кристаллизации полимера его аморфная фаза подвергается деформации. Допустим, что эта деформация носит характер всестороннего расширения (или сжатия). Добавочное отрицательное давление, вызывающее это расширение, [c.56]

    Понятно, что чем гибче молекула, тем меньше должен быть ее сегмент. Как правило, сегмент гибких молекул представляет собой отрезок цепи, состоящий нз 20—30 атомов элемента, образующего главную цепь. У макромолекул, содержащих полярные группы, сегмент значительно больше. У весьма жестких молекул размер молекулы и длииа сегмента совпадают. Поскольку гибкость молекул зависит от температуры, то, понятно, что с увеличением температуры длина сегмента должна уменьшаться. Длина сегмента зависит также от времени воздействия внешней силы. Так как релаксационный переход молекулы от одной конформации к другой требует определенного времени, то при быстрых внешних воздействиях на молекулу часть конформаций не может осуществиться и конформационный набор обедняется. Это приводит к увеличению жесткости макромолекулы и возрастанию длины сегмента. [c.430]

    В кристаллическом состоянии полимеры, как и низкомолекулярные кристаллические вещества, содержат области дальнего порядка, характеризующиеся трехмерной периодичностью и, следовательно, достаточно совершенной молекулярной упаковкой. Размер этих областей (их часто называют кристаллитами) обычно также меньше контурной длины макромолекулы одна и та же молекулярная цепь может проходить через несколько кристаллических областей. Эти кристаллические области в десятки, часто сотни, а иногда и тысячи раз превышают размеры звена полимерной цепи. Конформационный набор макромолекул внутри кристаллических областей резко ограничен по сравнению с конформационным набором в аморфном состоянии. При кристаллизации всегда реализуются конформации, характеризующиеся периодичностью в направлении оси макромолекулы. [c.168]


    В сетчатых полимерах существование надмолекулярных организаций зависит от плотности сетки химических связей. С увеличением степени полимеризации сетчатых полимеров обедняется конформационный набор цепей, снижается их гибкость и уменьшается вероятность существования надмолекулярных образований. [c.122]

    Важнейшим отличием между коррелятором общей плотности 0 , с одной стороны, и х> х с другой, является то, что последние помимо корреляции положений звеньев в пространстве учитывают еще и их связность. Это обстоятельство позволяет вычислять физико-химические свойства полимерной системы, вклад в которые дают отдельные молекулы, а величина вклада некоторого изомера определяется его конформационным набором. При вычислении таких свойств необходимо провести три этана усреднения. На первом пз них оно проводится по конформационному набору каждого I, д)-мера, затем по всем изомерам д и, наконец, с нужным весом по ММР. Для того чтобы выразить усредненные характеристики через коррелятор, формулу (11.15) удобно переписать в виде [c.218]

    Гиббс и Ди Марцио [99, 100] при объяснении механизма пластификации пренебрегли энергией взаимодействия полимер — пластификатор и свободным объемом. Они показали, что эффективность действия пластификатора в значительной степени зависит от конформационного набора его молекул — чем гибче молекула пластификатора, тем больше снижается Тс полимера. При одинаковой гибкости молекул пластификатора АТс уменьшается с увеличением их молекулярной массы. Согласно точки зрения Гиббса и Ди Марцио, пластификаторы, имеющие удлиненные молекулы, лучше совмещаются с полимером и лучше пластифицируют, чем компактные, шарообразные. [c.153]

    Впервые предположение о том, что процесс диффузии низкомолекулярных жидкостей или их паров в полимеры определяется не только проникновением молекул сорбата в поры полимера, но главным образом связан с конформационными перестройками макромолекул, т. е. с релаксационными процессами, сопровождающими процесс диффузии, было высказано П. И. Зубовым [71]. В ранних работах В. Е. Гуля и Б. А. Догадкина [72, 73] рассматривалось изменение релаксационных свойств полимеров в процессе набухания, изменение конформационного набора макромолекул, а также проводилось модельное описание кинетики набухания. Среди экспериментальных исследований в этой области отметим работу [74], в которой изучалось набухание каучуков в ряде растворителей различной полярности. Следует отметить, что конформационные перестройки макромолекул в процессе набухания могут привести к вырождению больших времен релаксации. Эти перестройки могут быть настолько глубокими, что часто вызывают кристаллизацию полимера, и тогда происходит выталкивание растворителя из полимерного образца. Все эти факторы влияют на кинетику процесса сорбции и приводят к своеобразному виду кинетических кривых. [c.215]

    Таким образом, при введении наполнителя в реакционную систему в случае формирования линейных полимеров или сетчатых полимеров ускоряющее действие поверхности может зависеть от ее влияния на перераспределение внутри- и межмолекулярных связей в реакционной системе, а это означает, что важную роль играет сама структура реакционной смеси (раствора или расплава) аналогично влиянию структуры раствора на адсорбцию. Из всего изложенного ясны причины, по которым наполнитель может, не влияя на кинетику реакции, влиять одновременно на свойства наполненного полимера. Влияние наполнителя на свойства системы при отсутствии взаимодействий с поверхностью по функциональным группам цепи и поверхности проявляется, по-видимому, только тогда, когда полимерная молекула имеет достаточно большую молекулярную массу, обеспечивающую значительное изменение конформационного набора под влиянием поверхности, которого достаточно для изменения свойств всего материала. Таким образом, наполнитель может влиять на свойства полимера, и не влияя на кинетику формирования полимера в присутствии наполнителя. [c.57]

    Интересная картина наблюдается при использовании в качестве наполнителей волокон из синтетических полимеров. Было обнаружено, что времена релаксации и энергии активации для данного полимера мало зависят от типа поверхности. Это позволяет сделать вывод о том, i To в механизме ограничения подвижности цепей вблизи границы раздела наибольшую роль играют процессы, связанные с обеднением конформационного набора макромолекул, ко- [c.108]

    Тот же вывод следует из данных о временах релаксации. Как видно цз рис. III. 13, введение пластификатора вначале несколько снижает времена релаксации, но переход от 1 к 10%-ному содержанию пластификатора практически не приводит к их изменению. Это связано, как мы предполагаем, с межфазной пластификацией на границе раздела и показывает, что введение пластификатора не оказывает существенного влияния на релаксационное поведение полимера в этой области. Это обусловлено доминирующим значением обеднения конформационного набора макромолекул на поверхности. [c.109]


    Увеличение энтропии активации в наполненных полимерах объясняется тем, что для перехода сегментов молекулы из одного положения в другое при релаксации цепи, эффективная жесткость которой повышена, требуется большее изменение конформационного набора по сравне- [c.134]

    Цепные молекулы всегда стремятся находиться в свернутых конформациях, отвечающих состоянию максимальной энтропии, до тех пор, пока не начнут действовать внешние силы. Под действием растяжения конформационный набор цепей меняется, что отвечает переходу в деформированное состояние. Поэтому количественная характеристика поведения каучуковых сеток в процессе нагружения — деформирования должна основываться на расчете конформационной энтропии всей совокупности цепей как функции степени растяжения. Этот расчет проводится в два этапа во-первых, вычисляется энтропия изолированной цепи [c.65]

    Видно, что с ростом концентрации ПИБ сильно уменьшается второй вириальный коэффициент А , что указывает на ухудшение качества растворителя для ПС, а также несколько возрастает радиус инерции. В других работах наблюдали как уменьшение размеров клубка в присутствии другого полимера, так и сохранение размеров [56—60]. Можно однако уже сейчас сказать, что размеры клубка макромолекулы полимера изменяются, когда она приводится в контакт с макромолекулой другого полимера, что указывает на изменение конформационного набора, а, следовательно, и гибкости макромолекул полимеров при их смешении. [c.19]

    Делались попытки объяснить сокращение полимеров в процессе пх нагревания присутствием влаги в волокне [2], двухфазным строением кристаллических полимеров [3] и, наконец, увеличением конформационного набора в высокоэластическом состоянии [4]. Однако некоторые из этих объяснений оказались несостоятельными [2, 3], в то время как остальные не со-дерн али должного экспериментального подтверждения. [c.332]

    В работах [4, 6], где также была отмечена исследованная нами аномалия теплового расширения ориентированных полимеров, дано объяснение этому явлению. Оно сводится к представлениям о влиянии двух факторов — обычного теплового расширения тела и стремления ориентированных макромолекул к увеличению их конформационного набора. Схема кристаллического полимера по Журкову [7,8] воспроизведена на рис. 4, а. При нагревании кристаллиты и аморфные прослойки ведут себя различно. Кристаллиты расширяются, а макромолекулы в аморфных прослойках благодаря энтропийному характеру упругости будут стремиться к сокращению. Воздействие растягивающей и сокращающей сил при нагревании наглядно иллюстрируется рис. 4, б, на котором изображен фрагмент модели, приведенной на ри( . 4, а. Сокращающая упругая сила в аморфных прослойках [c.334]

    При малых п, сопоставимых с , число возможных конформаций макромолекулы относительно мало. Это мешает ей принять наиболее вероятную конформацию большой молекулы — клубка, подобного изображенному на рис. I. 8. Но из этого вовсе не следует, как нередко утверждается, что с уменьшением степени полимеризации растет жесткость. Это — одна из издержек конформационных оценок гибкости. В действительности уменьшается не гибкость, а статистический вес, или конформационная энтропия макромолекулы (иногда говорят об уменьшении конформационного набора , представляющего собой тот же статистический вес, связанный с энтропией формулой Больцмана 5 = й1пй7). Гибкость же, выражаемая в абсолютных единицах /, а или Г, остается неизменной. Тем не менее обеднение конформационного набора сказывается при переходе полимера в конденсированное состояние. [c.41]

    Взаимодействия возрастают и при очень больших деформациях вследствие их аффинности и соответственно уменьшения поперечника образца при сохранении среднего числа, цепей, проходящих через этот поперечник (число цепей, проходящих через единичное сечение, возрастает). С этим связано явление нерва , наблюдающееся как у кристаллизующихся, так и у некристаллизующихся каучуков. К этому эффекту, обусловленному не только обеднением конформационного набора, но и кристаллизацией или образованием нематической фазы, мы еще вернемся в гл. VI. [c.160]

    Такой характер изменения е полиарилатов на основе изомеров карборана свидетельствует об уменьшении м-участка полимерной цепи с дифенил-м-карбораном, обусловленного увеличением конформационного набора. Низкочастотный максимум tgo обусловлен размораживанием подвижности участков полимерных цепей, содержащих полярные сложноэфирные группы и фенольные фрагменты. И так как этот участок непосредственно связан с карбора-новыми ядрами, высокая полярность последних оказывает существенное влияние на характер и интенсивность теплового движения данных кинетических единиц. [c.187]

    Особенность полимерных тел заключается в их способности кристаллизоваться в результате растяжения и ориентации в высокоэластическом состоянии при температурах, при которых кристаллизация изотропного образца термодинамически запрещена. Высокоэластическая деформация сопровождается распрямлением макромолекул, обеднением их конформационного набора и, следовательно, уменьшением энтропии аморфной фазы на Д5эл или соответственно увеличением энтропии кристаллизации [см. (VI.1)] на то же значение. [c.184]

    Ползучесть. Под ползучестью понимают развивающуюся во времени деформацию образца под воздействием постоянного напряжения в различных схемах нагружения, например в условиях растяжения, сдвига или сжатия. Полная деформация нагруженного полимерного образца в любой момент времени суммируется из упругой, высокоэластической и необрау1мой деформации. Упругая деформация возникает вследствие изменения валентных углов и длин связей. Высокоэластическая деформация развивается во времени с убывающей скоростью и стремится к достижению равновесного значения. Время установления равновесной деформации зависит от конформационного набора цепей, температурных условий опыта и приложенного напряжения. Деформация вязкого течения наблюдается главным образом в полимерах линейного строения. Здесь существенно отметить, что в условиях релаксации макромолекула стремится перейти в равновесное состояние путем превращения вытянутой конформации в свернутую конформацию, а при [c.124]

    Некоторые свойства сетчатых полимеров (например, эластические) определяются помимо конфигурационной структуры сетки также ее топологическими ограничениями, связанными со взаимной непроницаемостью полимерных ценей. Эти ограничения могут существенно влиять на конформационный набор сетчатых полимеров. Поэтому в некоторых случаях необходимо различать топологические изомеры, простейший пример которых приведен на рис. 1.6. Соединения, молекулы которых, кроме химических, связаны также топологическими связями, носят название катенанов и хорошо известны в органической химии [И, 12]. Подобные тонологические зацепления возникают только при рассмотрении молекулярных графов, помещенных в трехмерное пространство. Такую пространственную топологию следует отличать от топологии графа, определяемой его гомеоморфизмами [13]. За термином топология ниже мы оставим только его графовый смысл, поскольку рассмотрение пространственной топологической изомерии выходит за рамки настоящего обзора. Это связано с тем, что в большей его части рассматриваются только равновесные процессы получения разветвленных [c.154]

    Мы попытались в настоящем обзоре познакомить читателей со всем богатством теоретических подходов и разнообразием расчетных методов, которые используются в последнее время при описании статистики разветвленных и сетчатых полимеров. Все эти методы в большей или меньшей степени связаны с представлением полимерных молекул в виде графов, которые позволяют формализовать многие задачи химии и физики высокомолекулярных соединений. Общей их особенностью является то, что все экспериментально наблюдаемые характеристики полимеров представляют собой некоторые средние по конфигурационно-конформационному набору молекул полпмерного образца. Поэтому с необходимостью возникают задачи усреднения в ансамбле случайных графов, помещенных в трехмерное пространство. Вероятностная мера на множестве этих графов в случае равновесных систем задается распределением Гиббса и однозначно определяется выбранной физико-химической моделью. Современные ее варианты, учитывающие внутримолекулярную циклизацию и объемные физические взаимодействия, требуют привлечения для расчетов статистических характеристик полимеров новых подходов. Наиболее эффективными здесь являются, по нашему мнению, методы теории ноля, широкие возможности которых показаны в разд. IV. Здесь снова химическая физика полимеров вынуждена взять на вооружение графы, поскольку рабочим языком теорпи поля служит диаграммная техника. Можно с уве- [c.291]

    Ближний конформационный порядок предусматривает и конформационный набор в малых постедопзтельностях, например диадах, триадах и т. д Расстояние между группами, одинаково расположенными в пространство, называется периодом идентичности. Изменение набора конформеров влечет за собой и изменение периода идентичности. Ниже приведены данные о периоде идентичности (тнп конформации и величина периода) для виниловых полимеров (Т — транс, Гл и Гпр — гош левая и правая, цифры — число повторяющихся конформеров)  [c.41]

    Независимо от типа разрушения полимерного материала часть его макромолекул реализует способность изменять форму под действием механических сил. Однако относительная доля этих макромолекул или их отрезков в образце существенно зависит от типа разрушения. При хрупком разрушении полимера только в тонком слое на поверхности разрушения происходит изменение конформационного набора макромолекул, скорее всего в результате вьшужденноэластической деформации. [c.138]

    При анализе сформулированных выше аспектов проблемы прочности полимеров важно учитывать изменение их структуры в процессе нагружения. Заключительный этап разрушения происходит в системе, существенно отличающейся структурными характеристиками от исходной [299, с. 92]. Поэтому при изменении температуры и скорости нагружения (или времени действия силы) возможен переход от одного механизма разрушения к другому [300, с. 197]. Эта точка зрения [143, с. 218] в дальнейшем нашла подтверждение в экспериментах ряда ученых, например в работах Вильямса, Девриза, Ройланса [301, с. 197 302, с. 127—1351. Следует заметить, что на практике часто происходит разрушение предварительно ориентированных в направлении нагружения волокон или пленок. Система такого типа практически лишена способности изменять конформационный набор макромолекул в процессе разрушения. В таких системах при достаточно большой молекулярной массе противодействовать разрушению будут преимущественно силы главных химических валентностей, [c.235]

    Таким образом, причиной противоположных точек зрения на природу связей, определяющих способность полимеров противостоять механическому разрущению, является ограничение экспериментальных исследований примерами, относящимися только к одному из реализуемых на практике механизмов, и распростра-. нение полученных результатов на все возможные в процессе эксплуатации изделий из полимеров случаи. Это в сущности ненормальное положение в значительной мере обусловлено тем, что кинетическими уравнениями (V. 10а) и (V. 106) удобнее оперировать тогда, когда параметры этих уравнений не изменяются в зависимости от скорости, продолжительности процесса и температуры. Все эти условия соблюдаются только тогда, когда полимерное тело в значительной мере утрачивает способность изменять конформационный набор макромолекул, т. е. когда они предельно ориентированы или в силу других причин утратили гибкость. Другой причиной является трудность экспериментальной оценки локальных напряжений, приходящихся на перегруженную связь в полимере. Если имеют дело с неориентированным эластомером, то уровень напряжения на этих связях сравнительно мало отличается от среднего уровня напряженности связей в теле. Поэтому все приводимые результаты исследования кинетики накопления разрывов межатомных связей, кинетики образования и роста субмикроскопических и макроскопических трещин были получены на предварительно ориентированных невысокоэластических полимерах. [c.285]

    На основании данных положений мы считаем, что ограничения подвижности цепей в граничных слоях связаны прежде B ei o с энтропийным фактором, т. е. обеднением конформационного набора макромолекул вблизи границы раздела. Это позволяет удовлетворительно объяснить независимость эффекта от химической природы поверхности, распространение изменения подвижности на слои, непосредственно не контактирующие с поверхностью, влияние на эти эффекты гибкости полимерной цепи. Действительно, конформационный набор молекул жесткоцепного полимера, который весьма ограничен по сравнению с гибкими молекулами, не может столь же сильно изменяться вблизи границы раздела вследствие жесткости цепей, как в случае гибких молекул. Здесь эффекты изменения подвижности цепей не проявляются. [c.159]

    Полученные данные показывают заметное влияние границы раздела с твердым телом на подвижность молекулярных цепей пол нм ер ОБ, находящихся на этой грашще, и на их зависимость от толщины поверхностного слоя. Наблюдающееся расширение спектра времен релаксации указывает на то, что граница раздела оказывает различное влияние на подвижность тех илн 1ПШ1Х релаксаторов, участвующих в суммарном движении. Основной причиной изменения релаксационного поведения полимерных цепей в граничных слоях является обеднение конформационного набора цепей вблизи межфазовой границы вследствие конформационных ограничений, накладываемых поверхностью, или вследствие взаимодействия с нею. [c.161]

    Исследование коэффициентов диффузии и констант растворимости для наполненных аэросилом и сажей полиуретансемикарб-азидов показало, что при введении уже 1—3% наполнителей снижаются коэффициенты проницаемости и диффузии азота, аргона и двуокиси углерода и увеличиваются константы растворимости [91]. Эти изменения зависят как от природы и удельной поверхности наполнителя, так и от молекулярной массы гибкого блока в цепи полимера. Для полиуретанов с более гибкими цепями введение наполнителя приводит к более резкому снижению констант диффузии, что объясняется сильно выраженным в случае гибких цепей ограничением конформационного набора макромолекул вследствие взаимодействия с твердой поверхностью. [c.48]

    Данные, полученные для наполнителей с различной поверхностной энергией, свидетельствуют о малой зависимости изменения подвижности боковых групп и сегментов от природы поверхности наполнителя. Отсюда следует важный вывод о том, что в изменении подвижности основную роль играет геометрическое ограничение числа возможных конформаций макромолекул вблизи поверхности частиц, т. е. энтропийный фактор. Эти ограничения препятствуют такой плотной упаковке молекул, которая могла бы иметь место в объеме. Подтверждением сформулированному положению могут служить результаты исследования молекулярной подвижности в граничных слоях жесткоцепного полимера — ацетата целлюлозы. На рис. III. 24 представлены зависимости tg6 от температуры для ацетата целлюлозы в объеме и на поверхностях модифицированного и немодифицированного аэросила. Как видно, в случае жесткоцепного полимера эффекты изменения подвижности вблизи границы отсутствуют. Действительно, конформационный набор молекул жесткоцепного полимера, который весьма ограничен по сравнению с гибкоцепным полимером, не может столь же сильно изменяться вблизи границы раздела, как в случае гибких молекул, и эффект изменения подвижности цепей не проявляется. Аналогичные результаты были получены для поверхностных слоев акри-латно-эпоксидно стирольных композиций, где с увеличением жесткости цепей эффекты влияния поверхности уменьшались [226]. [c.126]

    На самом деле, однако, такое заключение не очевидно [2, 6] и можно вообще отказаться от деформационных терминов в определении Г,,,,, т. е. не учитывать АР в явной форме. Действительно, нагрузка может непосредственно влиять на АН и особенно на Д5. В уже рассмотренном случае растяжение цепи идентично увеличению ее жесткости (затрудняется образование свернутых конформаций, т. е. обедняется кон-формационный набор). Но возможны и противоположные варианты, когда ориентированная цепь (снова вследствие полиморфизма) уже находилась в частично свернутом, хотя и асимметричном состоянии, например спиральном (как пружина амортизатора). Тогда между этим упорядоченным состоянием и полностью вытянутым может быть серия промежуточных с более богатым конформационным набором. И вообще — независимо от реальных причин — если растяжение почему-либо приводит к увеличению конформациопного набора, Д5 должно возрастать, а Гпл — убывать с . [c.48]

    В противоположном случае, когда к беспорядку приводит растяжение спиралей, превращающее их в менее упорядоченную систему большей протяженности, или же когда оно приводит к обратимому скольжению единичных тяжей относительно друг друга в мультиспи-ральной системе, то приложение нагрузки равносильно уменьшению жесткости, так как конформационный набор нри плавлении увеличивается. Теперь [c.63]

    Закономерности влияния молекулярного веса на взаимную растворимость дают возможность высказать гипотезу о наличии сегментальной растворимости полимеров на границе раздела фаз в двухфазной смеси [24, 45, 96, 97, 100[. Действительно, при контакте двух полимеров на границе раздела начинается процесс взаимного растворения, приводящий к образованию переходного слоя, состоящего из смеси сегментов. Параметры этого слоя, т. е. его толщина и характер распределения сегментов по толщине определяются не только растворимостью сегментов, определенной из данных по совместимости олигомеров. На процесс граничного взаиморастворення налагается ограничение в виде требования к сохранению наиболее вероятной формы макромолекулярных клубков. Действительно, перемещение молекулы олигомера с молекулярным весом порядка 10 в слой другого полимера может произойти, однако, перемещение такого же по размерам отрезка макромолекулы вызовет изменение конформации клубка, что приведет к изменению энтропии системы. Видимо, растворимость сегментов должна лишь качественно согласовываться с величиной взаимной растворимости соответствующих олигомеров, количественное согласование невозможно без учета изменения конформационного набора пограничных макромолекул в зоне контакта полимеров. [c.28]

    Кривые дН1дк)р т и меют тенденцию к запределивапию при больших А-, которое достигается быстрее для более высоких температур. Можно предположить, что такое поведение ПГМА определяется наличием в исходном полимере сетки физических узлов, разрушающихся при растяжении и при повышении температуры, что должно сопровождаться увеличением энтропии системы. В то же время растяжение полимера снижает конформационный набор макромолекул, что ведет к понижению энтропии. Результатом двух противоположных эффектов является появление характерной энтропийной петли (рис. 2). Эти же структурные эффекты, вероятно, должны быть ответственными за нелинейный ход термоэластических кривых и за появление существенного энергетического члена (несомненно, что определенный вклад в изменение энергии деформируемого образца вносит и поворотная изомеризация макромолекул при их растяжении). [c.367]

    В ряде работ по термодинамическому исследованию растворов полимеров [1—6] было показано, что их сорбционная способность определяется в основном гибкостью цепей и плотностью их упаковки. Если цепи полимера гибкие, то вследствие своей гибкости молекулы могут принимать различные конформации, что способствует плотному размещению их в объеме полимера. Наблюдаемая значительная сорбция низкомолекулярного соединения таким полимером является результатом увеличения конформационного набора в смеси и, следовательно, определяется главным образом гибкостью полимерных цепей, а пе плотностью молекулярной упаковки. При этом изотерма сорбции имеет вид монотонной кривой [3, 5] (см., например, стр. 292, рис. 1). В случае полимеров с жесткими цепями, конформационный набор которых невелик, можно было ожидать малых значений сорбции. Однако опытные данные свидетельствуют о том, что сорбционная способность таких по.лимеров может быть значительной даже при малых значениях относительного давления пара низкомолекулярного компонента [1, 4, 6]. Такое сорбционное поведение полимеров с жесткими дщпял1И может быть связано только с тем, что молекулы этих полимеров вследствие малой гибкости не могут упаковаться плотно, т. е. такие полимеры должны обладать большей или меньшей микро-пористостью . В связи с этим можно предположить, что поглощение полимерол растворителя в начальной стадии должно приближаться к истинной адсорбции, сопровождаемой обычно уменьшением энтропии растворителя. Такое предположение действительно подтверждается измерениями теплот растворения полистирола в эти.тбензоле и бензоле 6, 7]. В этих работах было показано, что полистирол растворяется с выделением теплоты, что свидетельствует о малом взаимодействии между его цепями, т. е. о больших расстояниях между ними. Однако при низком молекулярном весе полимера короткие цепи вследствие большей своей подвижности могут осуществлять и плотную упаковку. Наличие сильных полярных групп в цепи полимера, создающих большие межмоле-кулярные взаимодействия, также может привести к структурам с большой плотностью упаковки. Таким образом, молекулярная упаковка жестких полимеров может различаться очень сильно — от рыхлой, с большой микропористостью, до плотной, типа низкомолекулярного стекла. [c.290]


Смотреть страницы где упоминается термин Конформационный набор: [c.42]    [c.487]    [c.124]    [c.200]    [c.203]    [c.203]    [c.159]    [c.57]    [c.107]    [c.132]    [c.47]    [c.17]    [c.422]    [c.204]   
Оборудование для переработки пластмасс (1976) -- [ c.21 ]




ПОИСК





Смотрите так же термины и статьи:

Конформационные



© 2025 chem21.info Реклама на сайте