Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Высокомолекулярные соединения структура

    Выше обсуждались вопросы, связанные с выяснением молекулярной структуры нефтяных асфальтенов вне зависимости от молекулярной структуры нефтяных смол. Между тем, в предыдущих главах мы неоднократно подчеркивали генетическую связь этих не-углеводородных высокомолекулярных соединений нефти. Рассмотрим теперь наличие общности и различия в строении молекул смол и асфальтенов, так же как мы сделали это в случае их элементного состава. Д. Эрдман в одной из своих работ [14] рассмотрению структурно-молекулярных вопросов смолисто-асфальтеновых веществ нефти предпослал характеристику их химического состава. Смолы и асфальтены, но мнению Эрдмана, представляют собою смеси высокомолекулярных неуглеводородных соединений нефти, в которых содержатся такие гетероэлементы, как кислород, азот и сера, а также небольшие количества ванадия и никеля. Используя большой комплекс физических методов для изучения углеродного скелета и соотношения в нем атомов углерода различной природы (ароматический, нафтеновый, парафиновый) в молекулах смол и асфальтенов, выделенных из сырых нефтей, природных асфальтенов и продуктов высокотемпературной переработки нефти, многие исследователи при решении принципиальных вопросов пришли к аналогичным выводам. В работах Эрдмана сделаны некоторые обобщения этих экспериментальных результатов. Важное научное значение имеет положение о том, что молекулы смол и асфальтенов состоят из нескольких плоских двухмерных пластин конденсированных ароматических и сферических нафтеновых структур, б.тиз-ких но своему строению. Принципиальное различие между смолами и асфальтенами, проявляющееся в различной их растворимости [c.98]


    Следующий этап развития химии твердого топлива связан с доминирующим значением угля, что требовало его всестороннего изучения, а также с бурным развитием химии высокомолекулярных соединений и петрографии угля. Широкое использование современных физико-химических и новых физических методов для исследования угля привело к новым успехам и к новому методологическому подходу при изучении химического состава и тонкой структуры твердого топлива. [c.6]

    Белки — природные высокомолекулярные соединения, являющиеся структурной основой всех живых организмов. К ним относятся ферменты — катализаторы многочисленных реакций в живых организмах, дыхательные пигменты, многие гормоны. Число встречающихся в природе белков крайне велико, их частью являются а-аминокислоты — СН(Р) — СООН, где Р — углеводородный радикал алифатического или ароматического ряда, либо гетероциклический радикал, содержащий серу и азот. Различие в химическом строении белков обусловлено количеством и порядком чередования аминокислот в молекуле. Белковые молекулярные цепочки располагаются в пространстве в виде спирали или волокон. ] лавная особенность белков — способность самопроизвольно формировать пространственную структуру, свойственную только данному виду растения, т.е. они обладают "памятью" макромолекулы Г>елков могут "записать", "запомнить" и передать "наследству" ин — (формацию. В этом состоит химический механизм самовоспроизве — />,ения. [c.48]

    В табл. 1 в самой общей (усредненной) форме представлена характеристика элементного состава и структуры высокомолекулярных соединений по данным [7]. [c.12]

    При смешении дизельных топлив различного происхождения отмечены случаи выпадения смолистого осадка. Это явление можно предположительно объяснить изменением растворяющей способности углеводородной среды, изменением структуры сольватных оболочек высокомолекулярных соединений и рядом других причин. Однако каких-либо методов оценки этого явления не разработано. [c.117]

    В настоящее время многие важнейшие направления развития химической технологии и биологии связаны с изучением и использованием высокомолекулярных соединений, которые, в частности, играют решающую роль в формировании структуры тканей живых организмов, а также многих синтетических материалов. Ярким примером этому могут служить искусственные полупроницаемые мембраны, используемые для технических целей, и биомембраны — важнейшая часть всех клеточных систем живых организмов и растений. [c.8]


    Поливинилиденхлорид представляет собой высокомолекулярное соединение структуры 1,3 ( голова к хвосту )  [c.281]

    Наряду с вышеуказанными основными реакциями при каталитическом гидрооблагораживании могут протекать побочные реакции ассоциирования частично гидрированных полярных осколков или структурных фрагментов высокомолекулярных соединений, ведущие к формированию новых структурных единиц с меньшими размерами частиц и ассоциатов, чем исходные надмолекулярные структуры. [c.50]

    Кроме того, часто возникают и другие осложнения процесса разделения. Значения pH смещаются в сторону кислых или щелочных сред, что ускоряет гидролиз полимерных мембран. Возможно обезвоживание набухающих мембран, сопровождающееся необратимым изменением их структуры. В концентрированных растворах ряда органических веществ может происходить растворение мембран. В результате дополнительного воздействия концентрационной поляризации на мембране могут выпадать в осадок малорастворимые соли, а при ультрафильтрации высокомолекулярных соединений образуется гелеобразный слой, что нарушает нормальную работу аппаратов. [c.188]

    Многие высокомолекулярные соединения в основном состоят из линейных молекул. Но другие, например некоторые феноло-форм-альдегидные смолы, представляют собой пространственные трехмерные структуры. [c.159]

    В табл. 40 приведены некоторые данные о связи между структурой высокомолекулярных соединений и пх химической стойкостью. [c.360]

    Отмеченные зависимости показывают, что при наличии прочно связанного водорода в ароматических структурах пиролизной смолы и кислорода в сложных гетероциклических высокомолекулярных соединениях тяжелых нефтяных остатков снижается истинная плотность кокса из этого сырья. Торможен ие в процессе уплотнения углеродных комплексов продолжается до превращения кокса в графит, и требуются более высокие температуры для заверщения это. о процесса. В связи с этим можно сказать, что чем меньше истинная плотность кокса, тем больше энергия активации его графитации. [c.198]

    В неочищенной присадке сантопур имеются примеси высокомолекулярных соединений, действующих иначе, чем очищенная присадка. Однако объяснить это явление удалось лишь благодаря электронномикроскопическим исследованиям. При изучении кри--сталлизации парафинов в присутствии присадок парафлоу, сантопур и депрессатора АзНИИ было показано, что эти присадки (содержащие побочные продукты конденсации) действуют и объемно (изменяя структуру кристаллов) и поверхностно (адсорбируясь на выделившихся кристаллах и агрегируя их). При этом эффективность присадок, содержащих компоненты, действующие и поверхностно и объемно, выше, чем присадок однотипного действия. [c.152]

    В ранних работах [38, 149], посвященных изучению металло-порфириновых комплексов, допускается возможность адсорбции металлов и металлопорфириновых комплексов вместе с асфальтенами и смолами на твердой поверхности минералов при перемещении нефти в пласте. Ассоциация порфиринов с асфальтенами объясняется, по-видимому, существованием прочных связей между их молекулами. В работе [198] сделано предположение, что свободные связи в молекулах ванадий-порфириновых комплексов замещены радикалами асфальтеновых структур. В результате образуются высокомолекулярные соединения сложной структуры, которые имеют практически неизвлекаемый из-за образования сложных связей ванадий. [c.26]

    Для систематического изучения состава и строения органического вещества твердых топлив вначале использовались главным образом методы органической химии, отчасти коллоидной химии, с привлечением данных, полученных геологией и микробиологией. Химия и физика высокомолекулярных соединений и угольная петрография в этот период только начинали оформляться в качестве самостоятельных разделов науки. Еще недостаточно были развиты физико-химические и чисто физические методы исследования. В этот период объектом исследования преимущественно являлись торфы, бурые угли, горючие сланцы, сапропелиты, растения-угле-образователи и продукты полукоксования этого твердого топлива. Каменные угли из-за большого разнообразия и очень сложной структуры были изучены слабее. [c.5]

    За последние годы углублению научных познаний о структуре твердого топлива в значительной степени способствовало развитие химии высокомолекулярных соединений и угольной петрографии. [c.6]

    Высокая селективность ПМР-спектроскопии для структурного анализа. различных нефтяных высокомолекулярных соединений была продемонстрирована рядом авторов [12, 14, 21—25]. Применение этого метода для исследований фракций битума [23] позволило в общих чертах установить их структуру. Более того, использование известных данных для модельных соединений по- [c.216]

    У гелей, образуемых высокомолекулярными соединениями, молекулы соединяются друг с другом в длинные цепочки или нити. Переплетения этих нитей создают ажурную пространственную решетку (скелет геля), ячейки которой заполнены интермицелляр-ной жидкостью. Такая структура и сообщает гелю свойства твердого тела сопротивляться деформации. Консистенция геля сильно зависит от содержания в нем растворителя, в данном случае воды. Например, гель кремневой кислоты, содержащий 94—97% воды, имеет вид желе и дрожит при сотрясении, при 90—94% воды гель режется нон<ом, а при 75% воды делается ломким. [c.34]


    Кремнийорганические соединения — полиор-ганосилоксаны представляют собой высокомолекулярные соединения, структура цепей которых образована кремнием и кислородом, при этом кремний связан с органическими радикалами  [c.244]

    Спектры ряда чистых высокомолекулярных соединений оыли изучены О Нилом и Виром [9], пытавшимися установить связь между молекулярной структурой и масс-спектром. На рис. 15 и 16 изображены графики, выра- [c.352]

    Высокомолекулярные соединения (белки, полипептиды, поливиниловый спирт и другие), добавляемые для стабилизации дисперсных систем, называют з а щ и т н ы м н коллоида м и.. дсорби-руясь иа границе раздела фаз, онн образуют в поверхностном слое сетчатые и гелеобразиь1е структуры, создающие структурно-механический барьер, который препятствует объединению частиц дисперсной фазы. Структурно-механическая стабилизация Г меет решающее значение для стабтытзацин взвесей, паст, пен, концентрированных эмульсий. [c.313]

    Из природных дисперсных материалов торф относится к наиболее гидрофильным, что, в общем, закономерно, поскольку его образование происходит вследствие биохимического и химического превращений отмирающей растительности в условиях избыточного увлажнения и ограниченного доступа воздуха. Гидрогеологические, климатические и геоморфологические условия формирования торфяных месторождений, многообразие расте-ний-торфообразователей предопределяют сложность химического состава и структуры надмолекулярных образований торфа. Торфяные системы в общем случае представляют собой дисперсный капиллярно-пористый материал, в котором на долю твердой фазы приходится примерно 15—40% объема, занимаемого материалом. Твердая фаза торфа, в свою очередь, является полидисперсной системой с развитой поверхностью раздела фаз (50—400 м2/г) и по своей природе относится к многокомпонентным полуколлоидно-высокомолекулярным соединениям с признаками полиэлектролитов и микромозаичной гетерогенности. [c.63]

    Экспериментальные данные и опыт эксплуатации полимерных материалов в условиях воздействия агрессивных сред позволяют делать выводы о связи мелсду структурой высокомолекулярных соединений и их химической стойкостью, В отличие от низкомолекулярных соединений, макромолекула содержит большое число реакционноспособных групп, в зависимости от характера которых или замены их другими группами свойства полимера могут в значительной степени изменяться в сторону их ухудшения или улучшения. Например, на поливиниловый снирт, содержащий гидроксильные группы, оказывают влияние вода, кислоты и щелочи. Стойкость поливинилацет ата, полиакриловой кислоты и других высокомолекулярных соединений, которые можно представить как производные полиэтилена при частичном или полном замещении водорода гидроксильными, ацетатными или другими функциональными группами, также понижена. Соединения, у которых водород в полиэтиленовой н,епи замещен фтором или фтором и хлором, стойки во всех агрессивных средах. [c.357]

    Хт.шческое строение, молекулярная масса, структура цепи и вза-нкное расположение молекул определя1эт свойства высокомолекулярных соединений. [c.18]

    С. Р. Сергиенко [215] пришел к выводу, что структуры высокомолекулярных соединений нефтей по своей форме не являются ни линейными, ни разветвленными и ввел новое понятие о гроздьевидной структуре, в которой возможны различные сочетания алифатических, нафтеновых и ароматических структур как углеводородных, так и неуглеводородных (гетероорганичес-ких). [c.15]

    В противоположность асфальтенам, масла содержат больше углеводородных, высокомолекулярных соединений и меньше гетероатомов (О, 5, Ы, V и др.). Структуры их характеризуются меньшей степенью цикличности. Истинная плотность кокса нз масел имеет наибольшее значение (2,16 г1см ). [c.196]

    Сернистые и азотистые соединения, содержащиеся в сырой нефти, перегоняются вместе с дизельным дистиллятом в процессе первичной перегонки. При перегонке может происходить расщепление высокомолекулярных соединений с образованием пизкомолекулярных соединений, соответствующих по температурам выкипания дизельному топливу. Сернистые и азотистые соединения, содержащиеся в топливах, полученных термическим крекингом, целиком представляют собой продукты расщепления более высокомолекулярных соединений, а в топливах, полученных каталитическим кре-1гингом, являются преимущественно продуктами, образовавшимися в результате изменения структуры углеводородного радикала сернистых и азотистых соединени исходного сырья. [c.197]

    Показано, что МСС можно рассматривать как статистический ансамбль квазичастиц (псевдокомпонентов), средние энергетические характеристики молекулярных орбиталей которых определяют реакционную способность, термостойкость и другие свойства. Химическая активность нефтяных систем обусловлена особыми квазичастицами, включающими в определенной статистической пропорции все компоненты системы. Реакционная способность системы в целом обусловлена характеристиками электронной структуры этих частиц. Для углеводородных систем можно эмпирически определить параметры реакционной способности. Предложены способы определения энергии этих псевдомолекулярных орбиталей, основанные на установленной взаимосвязи интефальных показателей поглощения молекул органических соединений с их усредненными по составу эффективным потенциалом ионизации (ПИ) и сродством к электрону (СЗ). Установлено, что энергии псевдомолекулярных фаничных орбиталей определяют реакционную способность МСС в процессах полимеризации и олигомеризации, реакционную способность ароматических фракций в процессах карбонизации, растворимость асфальтенов. Исследованы эффективные СЭ и ПИ высокомолекулярных соединений и различных фракций, в том числе асфальто-смолистых веществ (АСВ). Доказана повышенная электронодонорная и элекфоноакцепторная способность последних. На основе представлений о поливариантности химических взаимодействий в многокомпонентных системах и образования [c.223]

    Проведенные исследования показывают, что качество остатков и получаемых из них битумов зависит от природы исходной нефти, химического состава и структуры высокомолекулярных соединений, входящих в ее состав, а также от глубины и четкости отбора от нефти дистияяят-ных фракций при производстве как остаточных, так и окисленных битумов с оптимальным комплексом свойств. [c.3]

    Углубление процесса переработки нефти, или, что то же самое, повышение степени ее использования и повышение выходов ценных товарных нефтепродуктов — высококачественных моторных топлив и химических продуктов, стало в наше время одним из актуальнейших направлений совершенствования технологии переработки нефти. Основным резервом для эффективного решения этой задачи является тяжелая, или высокомолекулярная, часть нефти, составляющая при нынешней технологии переработки нефти 25—30% от поступившей в переработку сырой нефти и получившая название тяжелые нефтяные остатки . Если учесть, что больше половины этих остатков составляют так называемые неуглеводородные компоненты нефти, или смолисто-асфаль-теновые вещества, то станет ясно, какое большое научное значение и практическую актуальность приобретает проблема изучения состава, строения, свойств, химических реакций и основных направлений химической переработки и технического исиользова-Ш1Я нефтяных смол и асфальтенов. Вполне понятно поэтому, что эта область химии и технологии и геохимии нефти все больше и больше привлекает к себе внимание исследователей и инженеров. За носледние годы заметно расширилась география исследований в этой области и увеличилось число публикаций по составу, структуре и методам исследования смол и асфальтенов. Опубликованные материалы рассредоточены в многочисленных специальных периодических изданиях разных стран и поэтому труднодоступны. Обобщающие монографические работы по смолисто-асфальтено-вым веществам нефти отсутствуют. В монографии одного из авторов Высокомолекулярные соединения нефти , второе издание которой вышло в 1964 г. на русском и в 1965 г. — на английском языке, несколько специальных глав посвящены этому вопросу. [c.3]

    Детальное изучение структуры высокомолекулярных соединений нефти, особенно молекул смол и асфальтенов, должно оказать существенное влияние на установление связи живого органического вещества, из которого образовалась нефть, и основными составляющими нефть органическими соединениями. Здесь следует всномнить мнение но этому вопросу такого крупного специалиста, как Кальвин. Если мы хотим найти границу между живым и неживым веществом,— пишет Кальвин,— нам необходимо определить тонкую структуру некоторых соединений... [39]. Не исключено, что такие звенья, связывающие живое и неживое вещество, мы обнаружим среди высокомолекулярных неуглеводородных соединений пефти при изучении их топкой молекулярной структуры. [c.264]


Смотреть страницы где упоминается термин Высокомолекулярные соединения структура: [c.70]    [c.117]    [c.353]    [c.503]    [c.316]    [c.9]    [c.11]    [c.15]    [c.153]    [c.202]    [c.188]    [c.398]    [c.90]    [c.93]   
Краткий курс коллойдной химии (1958) -- [ c.155 ]




ПОИСК





Смотрите так же термины и статьи:

Высокомолекулярные соединени

Высокомолекулярные соединения

Структура высокомолекулярная



© 2025 chem21.info Реклама на сайте