Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основные положения теории колебательных спектров

    Основные положения теории колебательных спектров [c.429]

    В основе теории колебательных спектров лежит представление о молекуле как о системе материальных точек (атомных ядер), совершающих малые колебания около положения равновесия. Как правило, методами комбинационного рассеяния света изучается строение молекул в основном электронном состоянии, поэтому в дальнейшем будет подразумеваться, что речь идет именно о таких состояниях. [c.139]


    Нз изложенного очевидно, что многоатомная молекула может иметь большое число колебательных уровней энергии, и поэтому колебательный спектр будет сложным. Однако в простейшем случае, когда значение с, для данного нормального колебания изменяется на единицу, частота соответствующей спектральной линии будет V . Отсюда следует, что если бы все виды колебаний были спектроскопически активными, то частоты основных колебательных полос, для которых Диу=1, должны были бы быть равны Зи —6 частотам нормальных колебаний молекулы, следующим из классической теории. На практике положение усложняется тем, что, во-первых, не все частоты активны, во-вторых, присутствие некоторых спектральных линий обусловлено обертонами, т. е. случаями, когда Диу>1, и, наконец. В-третьих, образованием комбинационных тонов, когда одновременно изменяется два или больше Vj. Несмотря на эти трудности, общие заключения, которые должны быть сделаны на основании предыдущих рассуждений, имеют большое значение. Вне зависимости от того, сколь сложны могут быть действительные колебания ядер в данной молекуле, частоты основных линий в колебательном спектре, опуская обертоны, комбинационные тона и линии с чередующейся интенсивностью, будут равны нормальным колебаниям данной молекулы. Хотя вышеприведенные рассуждения были основаны на приближенно верном допущении гармоничности колебаний, что предусматривает пренебрежение всеми членами в ряде Тейлора для потенциальной энергии со степенями выше второй, но те же самые общие результаты могут быть получены и для ангармонического осциллятора. Единственная существенная разница заключается в том, что частоты колебательных линий не точно равны частотам нормальных колебаний молекулы, как это имеет место в случае двухатомной молекулы. (Сравн. параграф 296). Однако во многих случаях возможно ввести поправочный член, включающий постоянную ангармоничности, но мы не будем здесь разбирать этот вопрос. [c.261]

    В этих условиях становится применимой статистическая теория масс-спектров, основные положения которой сводятся к следующему. Колебательная энергия может передаваться с одной степени свободы на другую или, другими словами, с одного нормального колебания на другое. Как следует из данных спектроскопии по ширине линий, такие переходы происходят с частотой, равной 0,01— 0,1 самой частоты колебаний или менее. Следовательно, с такой частотой колебательная энергия мигрирует по иону и в конце концов на одном из нормальных колебаний по законам статистики случайным образом оказывается энергия, достаточная для диссоциации. По такому механизму происходит обычный термический распад молекул [16]. Аналогичная схема была использована для построения статистической теории масс-спектров, применимой для указанных медленных распадов. С ее помощью были вычислены масс-спектры нескольких сравнительно простых молекул [17, 18]. Одним из недостатков статистической теории является необходимость подбора для каждого масс-спектра большого числа параметров. Только при таком механизме диссоциации энергия теплового возбуждения исходной молекулы и энергия, полученная при электронном ударе, эквивалентны. [c.12]


    Из рассмотрения материалов табл. 4.1 вытекает помимо всего прочего, что для установления структуры молекулы бензола методами колебательной спектроскопии потребовался только подсчет числа полос в инфракрасном спектре и спектре комбинационного рассеяния. Кстати, именно таким путем зачастую решается вопрос о характере координации атомов в комплексных соединениях, а также ионов в растворах. Между тем в самом общем случае при полном решении колебательной задачи в распоряжении исследователя оказывается весьма большая совокупность данных (частоты, форма колебаний, электрооптические параметры и т. д.), позволяющих определять не только строение и симметрию молекулы, но и судить о прочности связей, их взаимном влиянии, распределении электронной плотности и других важных характеристиках. Аналогичное положение имеет место и в других разделах спектроскопии. Так, при изучении и интерпретации электронных спектров органических, неорганических и комплексных соединений хорошие результаты дает проведение квантовохимических расчетов, расчетов на основе теории поля лигандов и т. д. По существу электронная спектроскопия является в настоящее время одним из основных экспериментальных методов, на которых базируется современная теоретическая химия. Совершенно особое значение имеет в связи с этим сочетание и совместное использование различных спектроскопических методов при решении структурных вопросов. Такой комплексный подход к проблеме открывает чрезвычайно широкие возможности и обеспечивает высокую надежность получаемой с его помощью информации о строении химических соединений. Укажем для примера, что при решении задач органической химии наилучшие результаты дает совместное использование методов инфракрасной спектроскопии, ядерного магнитного резонанса и электронной спектроскопии. [c.113]

    В 1969 г. ЗРайт [361] попытался внести некоторые изменения в диапазон частот, ответственных за мускусный запах (145— 149, 245—259, 300—319, 395—415 сж ), а недавно он [362] высказал новое предположение, согласно которому существует зависимость запаха от наличия группы характеристических частот в колебательных спектрах при условии отсутствия определенных частот. Райт пишет Учитывая более полную информацию, доступную в настоящее время, основное положение теории, заключающееся в том, что запах связывается с наличием определенных комбинаций частот, должно быть изменено с включением комбинаций, в которых постоянно отсутствуют определенные частоты. Этим не подразумевается какой-либо кардинальный пересмотр вибрационной гипотезы [362, стр. 136]. [c.172]

    После ознакомления с основными принципами колебательной спектроскопии в предыдущем разделе мы перейдем к более сложным системам. Если молекула содержит N атомов, для полного определения положения всех атомов требуется ЗЖ координат. Эти координаты можно разделить на 6 координат для определения положения центра тяжести (3 координаты) и относительного вращательного положения (еще 3 координаты) молекулы и на ЗN— 6 координат для определения относительного положения атомов. Это относится к нелинейной молекуле. Для линейной молекулы требуется только две вращательные координаты, так что для определения положения атомов внутри нее остается ЗЖ — 5 координат. Применение теории малых колебаний показывает, что все возможные сложные относительные движения атомов в молекуле можно рассматривать как состоящие из ЗN — 6 ЗN — 5 для линейной молекулы) нормальных колебаний. Нормальным типом движения считается такой, в котором молекула не претерпевает чисто трансляционного или вращательного движения и в котором все атомы колеблются около своих равновесных полюжений с одной и той же частотой в фазе друг с другом, т. е. все атомы проходят через свое равновесное положение в одно и то же время. Для нелинейной молекулы следует ожидать ЗN — 6 нормальных колебаний, следовательно, ее спектр может содержать до З У — 6 основных частот. Помимо основных частот, т. е. частот переходов, нри которых происходит изменение на 1 единицу колебательного квантового числа только одного нормального колебания, спектр также может содержать значительно уменьшенной интенсивности обертонные полосы и полосы составных частот. Обертон возникает в результате перехода, в котором одному нормальному типу колебания соответствует изменение квантового числа больше чем на единицу, например от и = О до ге = 2, в то время как полосе составных частот отвечает переход, при котором меняется квантовое число более чем одного нормального типа колебаний. Для ожидаемых интенсивностей была предложена весьма упрощенная, но достаточно точная картина. По ряду причин все основные частоты не столь интенсивны, как это можно было бы ожидать, так что некоторые полосы составных частот и обертонные полосы [c.324]


    Спектря поглощения в ультрафиолетовой и видимой областях УФ-спектры) обусловлены переходами между электронными состояниями молекулы, в связи с чем их также называют электронными спектрами поглощения. Каждое электронное состояние м олекулы характеризуется некоторым интервалом значений энергии, обусловленным колебательным движением молекулы. Поэтому каждому электронному переходу в спектре соответствует широкая полоса поглощения. При съемке. спектра в газовой фазе, как правило, удается выявить колебательную структуру электронного перехода (в таком случае полоса поглощения выглядит как система близко,расположенных узких полос), но при получении спектра в конденсированной фазе очень часто (но не всегда) тонкая структура, полосы полностью исчезает вследствие проявления межмолекулярных взаимодействий. Теория молекулярных орбиталей (МО), положенная в основу теоретической интерпретации электронных спектров, связгывает переход молекулы дз основного электронного состояния в возбужденное с переходом Галентного электрона с занятой МО на свободную МО. При этом трем типам существующих МО — о, я и п — соответствуют четыре типа электронных переходов а- о,  [c.50]


Смотреть страницы где упоминается термин Основные положения теории колебательных спектров: [c.350]    [c.90]   
Смотреть главы в:

Новый справочник химика и технолога Аналитическая химия Часть 3 -> Основные положения теории колебательных спектров




ПОИСК





Смотрите так же термины и статьи:

Колебательные основные

Колебательный спектр теория

Основные положения

Спектры колебательные

спектры теория



© 2024 chem21.info Реклама на сайте