Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Стационарное пламя горелки

    СТАЦИОНАРНОЕ ПЛАМЯ ГОРЕЛКИ [c.112]

    При горении смеси горючих газов (паров) с воздухом, подаваемых с определенной скоростью к зоне горения (горелке), образуется стационарное пламя, имеющее форму конуса. Во внутренней части конуса смесь подогревается в основном до температуры воспламенения во внешней части конуса происходит горение, характер которого зависит от состава смеси. В отличие от диффузионного пламени в этом случае возможно горение и во внутренней части конуса. Если в смеси недостаточно кислорода, то во внешней части конуса продукты, образующиеся при неполном горении во внутренней части конуса, сгорают полностью. [c.182]


    Стационарные пламена в закрытых системах. Имеются сообщения о многочисленных экспериментальных исследованиях турбулентного горения в закрытых прямоточных горелках Однако лишь в немногих из этих экспериментов измерялась скорость турбулентного горения. В этих экспериментах поток горючего поступает в камеру сгорания прямоугольного сечения [c.231]

    Как кинетические, так и диффузионные пламена могут быть стационарными или нестационарными. В реальных теплоэнергетических установках стационарные пламена имеют место при непрерывном сгорании в различных горелках, газовых турбинах, а нестационарные— при прерывистом сгорании, например в двигателях внутреннего сгорания. [c.16]

    Пламенами на горелках называют стационарные пламена, возникающие при воспламенении струи горючего газа, распыла топлива или горючей смеси, истекающей из трубки. Пламена этого типа являются основным элементом установок непрерывного горения. На практике применительно к таким пламенам используют также другой термин струйные пламена. Ниже рассмотрены свойства диффузионных пламен на горелках, создаваемых струей горючего газа, в котором отсутствует первоначальная примесь воздуха, называемого первичным воздухом . [c.169]

    Пламя, возникшее в горючей смеси, способно распространяться в сторону несгоревшего газа. В практических условиях встречаются пламена, распространяющиеся в замкнутом объеме первоначально неподвижного газа, и пламена, горящие в струе газа, поступающего с определенной скоростью в зону горения. Примером пламени, распространяющегося в замкнутом объеме, является пламя, возникающее в сферической колбе при поджигании содержащейся в ней горючей смеси нагретой проволокой или электрической искрой. Примером пламени, распространяющегося в струе газа, служит любое стационарное пламя, горящее в трубе при пропускании через нее горючей смеси, или пламя бунзеновской горелки. Как при распространении в замкнутом сосуде, так и при горении в струе газа пламя характеризуется некоторой скоростью распространения, которая всегда является относительной скоростью, т. е. скоростью распространения фронта пламени по отношению к несгоревшему газу. [c.487]

    Способность пламени к распространению делает возможным создание системы с непрерывным подводом топлива и воздуха, в которой будет поддерживаться стационарное пламя. Это пламя можно стабилизировать с помощью горелки. Скорость подачи, топлива обычно, колеблется от нескольких миллилитров в минуту для дежурного пламени бытовых газогорелочных устройств до нескольких тонн в час в случае факела промышленной мазутной форсунки. [c.555]


    Область существования вынужденного вибрационного горения больше области существования самовозбуждающегося вибрационного горения струйно-вихревое пламя получается на горелках, которые, в отсутствии вынуждающих колебаний, имеют только стационарные пламена. [c.25]

    Бунзеновская горелка. Режим стационарного пламени обычно устанавливается при сгорании потока однородной среды не внутри трубы, а у ее устья. Пламя, фиксированное на выходном конце трубы, имеет форму, близкую к конической (бунзеновский конус). Если сжигаемая смесь содержит избыток горючего, продукты неполного сгорания, смешиваясь с атмосферным воздухом, догорают с внешней стороны основного, внутреннего конуса пламени, образуя так называемый внешний бунзеновский конус. [c.13]

    На выходе из горелки профиль скорости в потоке практически сохраняется, а зона действия теплоотвода к стенкам горелки сокращается. Вследствие этого скорость распространения пламени постепенно увеличивается. Начиная с некоторого расстояния от устья горелки имеются сечения (сечение ///, рис. 8-4), где кривые W и Un пересекаются в двух точках. На участке между точками пересечения профилей W и Un скорость распространения пламени Un больше скорости потока, а в остальных участках сечения Unмежду сечениями И и III существует такая точка, в которой скорость пламени как раз равна скорости смеси W. В таких точках по периферии горелки пламя удерживается стационарно, обеспечивая естественную стабилизацию факела постоянно действующим зажигающим кольцом. [c.150]

    При стационарном режиме скорость вытекания смеси равна скорости нормального распространения пламени, но по мере регулирования горения возможны и нарушения стабильности зоны горения отрыв пламени от кратера горелки или втягивание пламени в смесительную полость горелки (проскок пламени). Высота конуса зоны горения бунзеновской горелки зависит от скорости подачи смеси Wf. При чрезмерном увеличении скорости пламя оторвется, а при слишком малой скорости произойдет проскок. [c.111]

    В некоторых случаях на выходе из круглых отверстий наблюдаются необычайные формы пламени [51]. Например, некоторые смеси углеводородов с воздухом дают пламя многогранной формы. Наблюдались пламена в виде пирамид, имеющих от трех до семи граней, которые могут вращаться или оставаться стационарными. Число граней зависит от размера горелки и от состава газовой смеси. Истолкование этих явлений, очевидно, представляет сложную гидродинамическою задачу, которая до сих пор еще не решена. [c.205]

    Применяемые в лабораториях газовые горелки (бунзеновская горелка , горелка Теклу и другие) состоят из металлической трубки, имеющей в нижней части регулируемые отверстия для входа воздуха и центральное отверстие, через которое входит газ под давлением, увлекая с собой воздух. Внутри горелки образуется смесь горючего газа и воздуха пламя является стационарным взрывом (стр. 295). Пламя образуется и удерживается вблизи верхнего конца горелки, так как скорость истечения горючей смеси через горелку равна скорости распространения пламени в смеси. Когда по какой-либо причине скорость протекания газообразной смеси через горелку становится слишком малой, пламя проскакивает внутрь горелки когда скорость смеси слишком высокая, происходит отрыв пламени. [c.493]

    Для решения ряда аналитических задач применяют детекторы транспортного типа на основе детектора по ионизации в пламени. Эти системы характеризуются рядом существенных недостатков. Элюент из колонки наносят на транспортный элемент (чаще всего проволоку), который протягивают через испаритель растворителя, поскольку большинство элюентов, за исключением воды и сероуглерода, ионизируются в пламени и мешают детектированию. Затем проба вместе с проволокой вводится в пламя, испаряется и попадает в горелку детектора или же подвергается пиролизу. Ионизация в пламени вызывает появление тока в цепи детектора. Транспортные детекторы очень чувствительны, но они пригодны только для анализа таких систем, в которых элюент и определяемые вещества имеют сильно различающиеся температуры кипения. Дополнительные проблемы, связанные с уносом неподвижной жидкой фазы из колонки, возникают, когда разделение проводят на основе распределительного механизма. Исключением в этом отношении являются химически связанные стационарные фазы. [c.70]

    Стабилизация пламени. Образовавшееся пламя может перейти в стационарное состояние, при котором набегающая свежая смесь непрерывно поджигается при контакте с горячим частично сгоревшим газом. Таким образом пламя удерживается на кромке горелки Бунзена. [c.143]

    Уравнения сохранения в разд. 2.1—2.4 выводились в фиксированной в пространстве системе координат. Это так называемые эйлеровы координаты, и при -их использовании в стационарных задачах уравнения сохранения не содержат частных производных по времени [см. уравнения (2.6), (2.12) и (2.21)]. Данная система координат особенно удобна при исследовании стационарных реагирующих потоков, таких, как пламена на неподвижных горелках. При этом в уравнениях остаются конвективные члены. [c.40]


    Стационарные открытые пламена. Экспериментальная техника, необходимая для получения стационарного турбулентного пламени в открытой горелке, по существу, является той же, что и при изучении ламинарных пламен (см. рис. 1 из главы 5), за исключением того, что в данном случае должны быть приняты какие-то меры, обеспечивающие возникновение турбулентности в набегающем потоке. Дамкеллер [-] и другие [12-19] дри исследовании турбулентного горения применяли горелку, имеющую достаточно длинную трубу, и использовали достаточно высокие скорости потока, чтобы получить в трубе течение с полностью развитой турбулентностью. Преимущество этого метода состоит в том, что в данном случае характер турбулентности в набегающем потоке сравнительно хорошо известен, недостаток — в том, что как масштаб, так и интенсивность турбулентности здесь меняются с изменением расстояния от оси трубы. Чтобы избавиться от этого недостатка, Райт [2 ] и другие [16,21-28] использовали горелку с более короткой трубой, внутри которой для создания турбулентности помещался экран или перфорированная пластина (в некоторых случаях они помещались в потоке перед входом в сужающуюся часть трубы). Хотя вблизи экрана турбулентность является анизотропной и ее свойства трудно описать, на достаточно большом расстоянии вниз по потоку турбулентность становится почти изотропной, с хорошо известными свойствами [2 ]. Недостаток этого метода состоит в том, что в изотропной области интенсивность турбулентности всегда очень мала, и наличие турбулентности приводит к небольшим изменениям скорости горения, так что исследование интересных эффектов, связанных с интенсивной турбулентностью, оказывается невозможным. [c.228]

    В потоке горючей смеси, входящей в пламя со скоростью, равной скорости его распространения, должен установиться стационарный фронт пламенп. Однако в действитольностп одного этого условия оказывается еще. недостаточно, ибо самые малые местные колебания скорости потока или скорости раснространения пламени, например вследствие искривлений его поверхности, могут привести к нарушению равновесия п смещению фронта пламени. Поэтому для установления стационарного пламени необходимы дополнительные условия, обеспечивающие его стабильность. Стабилизация пламен в ламинарных и турбулентных потоках, представляющая особый технический интерес, по существу всегда основана на создании фиксированного источника ненрерывного поджигания горючей смеси продуктами ее сгорания — например, в кольцевом пространстве, отделяющем конус пламени от края горелки, или в зоне рециркуляции за плохо обтекаемым телом, номещепным в потоке горючей смеси. [c.166]

    В парогенераторарс горючая смесь подается в топочную камеру через горелки со скоростью порядка 30—60 м/с, а в форсированных камерах сгорания эта скорость может достигать 150—200 м/с. При условиях, имеющих место в топочной камере, скорость распространения пламени в зоне воспламенения значительно меньше и составляет для энергетических топлив несколько метров в секунду. Для обеспечения существования стационарного факела при указанном соотношении скоростей необходимо наличие в топке непрерывного мощного источника зажигания, от которого пламя может распространиться по всему сечению потока горючей смеси. Следовательно, для стабилизации факела в топочной камере, т. е. для удержания пламени в нужных геометрических координатах, а именно у устья горелок, необходимо обеспечить непрерывное зажигание горючей смеси. Критерием устойчивого зажигания является наличие распространения пламени от местного источника воспламенения по всей струе горючей смеси. [c.165]

    По сравнению с реагирующим потоком в ударной трубе пламена, стабилизированные на горелках, обладают очень важным преимуществом стационарности реакции. Ламинарный, плоский и одномерный поток, получаемый на плоской горелке, чрезвычайно удобен для кинетических измерений по всей длине зоны горения. Исследования, проведенные на плоских горелках на разных расстояниях от ее среза, показали, что обычная структура таких пламен может быть разделена по меньшей мере на три зоны зону предварительного подогрева газовой смеси, собственно зону реакции и зону сгоревших газов. Последние две зоны представляют наибольший интерес для кннетиков. Одномерный характер потока на расстоянии в несколько сантиметров от горелки, профиль температуры и скорости очень легко лоддаются проверке по сравнению с параметрами потока за волной в ударных трубах. [c.126]

    Схема стабилизации пламени горелки факелом стационарного запального устройства приведена на рис. 6.4, а. Надежность этого метода зависит в свою очередь от устойчивости запального факела. Наиболее широкое распространение в печах и котлах получили керамические туннели цилиндрической, конической, прямоугольной или щелевидной формы. В туннель обычно поступает подготовленная смесь газа с воздухом с предварительньш подогревом воздуха или без него (в теплотехнических установках газ, как правило, не подогревают). В ряде случаев в туннель подают частично подготовленную газовоздушную смесь или даже раздельно газ и воздух, и тогда туннель кроме своего основного назначения — стабилизировать пламя — выполняет функции смесителя. В туннель можно подавать из устья горелки прямолинейный поток газовоздушной смеси, в котором все линии тока параллельны оси горелки или имеют с ней небольшой угол (при конфузорном устье). Такие горелки иногда называют прямоструйными. К ним относятся, например, инжекционные горелки среднего давления. В туннель можно подавать предварительно закрученный поток газовоздушной смеси. Горёлки с закруткой потока, выходящего из устья, часто называют вихревыми. [c.267]

    Количественное и качественное изучение инфракрасного излучения при взрывах смесей окиси углероде с кислородом и действия катализаторов на это излучение составило предмет целого ряда исследований Гарнера и его сотрудников [15, 90, 92, 94—96]. Инфракрасный спектр испускания этих взрывов в общих чертах напо-лшнает спектр стационарного пламени, хотя при взрывах полоса при 2,8 ц сравнительно более интенсивна, обычно она даже интенсивнее полосы 4,4 [х. При тщательной осушке энергия, излучаемая при взрывах, заметно возрастает и интенсивность по лосы прт 4,4 Вводной из своих ранних работ Гарнер и Джонсон ноказали, что после осушки интенсивность излучения при всех длинах волн, отличных от 4,4 1, растет примерно на 60%, тогда как интенсивность максимума полосы при 4,4 ц увеличивается в четыре раза. Полная энергия излучения в инфракрасной области в сухих смесях примерно в 2,5 раза больше, чем во влажных в более поздних опытах с применением более совершенной осунгки увеличение интенсивности еще более заметно. Показано, что этот эффект не может быть объяснен поглощением света парами воды, поскольку в спектральной области близ 4,4 л оно пренебрежимо мало. Полностью исключить влияние поглощения света другими компонентами смеси невозможно, но известно, что пламя бунзеновской горелки для своего собственного из.тучения прозрачно. Прямыми опытами [c.172]

    Турбулентное пламя предварительно перемешанной смеси. Турбулентное пламя предварительно перемешанной смеси является основным режимом горения в двигателях внутреннего сгорания с искровым зажиганием и в форсажных камерах реактивных двигателей. Эти пламена могут быть стабилизированы как внутри, так и на выходе предварительно перемешанного потока из трубопровода. При низких скоростях потока, как в случае пламени бунзеновской горелки, пламена ламипарны с четко различимым фронтом пламени, т.е. они стационарны во времени. При скорости потока выше определенной критической величины поток в трубопроводе становится турбулентным и горение сопровождается ревущим звуком. Пламя в этом случае имеет широкий размытый фронт. Однако снимки фронта турбулентного пламени, сделанные с высоким временным разрешением, демонстрируют сложную извилистую структуру фронта (см. рисунки 14.1, 14.2 и 14.3). [c.194]

    Пламена на горелках являются стационарными, и фронт пламени может считаться нриблизительно плоским, так как его радиус 1 ривизны велик по сравнению с шириной зоны горения. Хотя фронт пламени наклонен к направлению потока, можно видеть, что уравнения (1.2) и (1.4) одномерного распространения пламени остаются справедливыми и в этом случае. [c.199]

    Стабилизация пламени в пограничном слое обычна в горелках небольшого размера типа горелок Бунзена. Естествеотое поджигание в этом случае осуществляется по окружности у кро -1Ш горелки, где имеются условия, при которых пламя может существовать постоянно. От такого поджигающего кольца пламя распространяется в поток, образуя стационарную поверхность -конус пламени. [c.228]

    Если частные производные d/dt для всех зависимых переменных системы равны нулю, то такие системы называются стационарными (в противном случае — нестационарными). Пламена, стабилизированные на горелках, относятся к стационарным, и для квазиодномерного стационарного пламени имеем d AMy) fdt = О, и, следовательно, АМу — onst. В гипотетическом случае строго одномерного адиабатического пламени постоянная Му — адиабатическая массовая скорость горения. Она является собственным значением соответствующей физической задачи и равна произведению плотности на линейную скорость потока в любой точке пламени. Таким образом, [c.34]


Смотреть страницы где упоминается термин Стационарное пламя горелки: [c.487]    [c.16]    [c.289]    [c.145]    [c.93]    [c.289]    [c.231]   
Смотреть главы в:

Горение -> Стационарное пламя горелки




ПОИСК





Смотрите так же термины и статьи:

Горелки



© 2025 chem21.info Реклама на сайте