Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химия водных растворов урана

    Торий будет иметь значение как ядерное топливо, когда при его использовании станет возможным воспроизводство ядерного топлива. Относительная простота химии водных растворов тория по сравнению с химией урана не является существенным преимуществом, так как легкость выделения урана из руд зависит главным образом от необычных свойств уранил-иона [c.332]


    Второе подсемейство составляют торий, протактиний и уран. Эти элементы похожи на металлы третьего переходного ряда соответствующих групп — с 4-й по 6-ю, т. е. на гафний, тантал и вольфрам. Аналогия начинается со степеней окисления и включает химию некоторых бинарных соединений, поведение в водных растворах и образование комплексов. Однако по кристаллическим структурам ряда соединений эти элементы близки к лантаноидам, поэтому, в частности, торий в природе встречается в основном совместно с лантаноидами. [c.386]

    В водных растворах уран может существовать в четырех состояниях окисления в соответствующих условиях могут происходить реакции комплексообразования с любыми ионами (кроме СЮ ), а также реакции гидролиза, приводящие к образованию полимерных ионов. Все это очень усложняет химию водных растворов урана. Окислительно-восстановительные потенциалы соединений урана в Ш растворе НСЮ4 приведены в табл. 32.4 в присутствии других анионов эти значения изменяются. Так, пара в Ш [c.554]

    В настоящее время химия водных растворов ксенона базируется на продуктах гидролиза Хер4 в воде [1—4] (см. также стр. 198) и на продуктах щелочного гидролиза ХеРб [4] (см. также стр. 211). В первом случае твердый продукт гидролиза — неустойчивая ХеОз [3, 5], во втором случае — натриевая соль ксенона (VIII) общей формулы М.2 ХеО . Из натриевой соли были полу чены перксенонаты тяжелых металлов, таких, как барий, медь, свинец, серебро и уран (см. стр. 220). [c.193]

    СИЛЬВЙН [от латинизированного имени (Sylvius) голл. врача и химика Ф. Боэ], КС1 — минерал класса хлоридов. Хим. состав (%) К — 52,44 С1 — 47,56. Примеси бром, свинец, цезий, аммоний, уран, железо, барий, медь, таллий, марганец. Структура координационная, сингония кубическая, вид симметрии гексоктаэд-рический. Образует зернисто-кристаллические массы иногда встречается в гнездах и линзах в виде крупных кристаллов кубического, реже — октаэдрического габитуса. В прожилках обычно имеет волокнистое строение. Отмечаются выцветы С. на почве, стенках горных выработок и среди продуктов вулканических возгонов. Спайность совершенная по (100) (см. Спайность минералов). Плотность 1,99 г/см . Твердость 2,0. Хрупкий. Бесцветный и прозрачный в зависимости от количества микровключений газа, гематита или галита цвет становится молочно-белым, голубым, красным, желтым (см. Цвет минералов). Блеск стеклянный (см. Блеск минералов). Излом неровный (см. Излом минералов). Гигроскопичен, легко растворяется в воде. Изотропный, п = = 1,4904. Возникает в результате испарения природных вод, содержащих хлористый калий, в процессе перекристаллизации карналлита в соленосных отложениях и как продукт вулканической деятельности. Получают С. из водных растворов, [c.389]


    Современная химия фтористого уранила концентрирует свое внимание на применении его водных растворов в качестве горючего для гомогенных ядерных реакторов, поэтому к изучению свойств иОгРг в растворе были приложены наибольшие усилия. Полученный низкотемпературным способом фтористый уранил чрезвычайно гигроскопичен, высокотемпературный же препарат значительно менее гигроскопичен. Степень гидратации фтористого уранила зависит от условий, в которых она проводится, и до настоящего времени не опубликовано ни одной работы, содержащей какие-либо определенные выводы. Тем не менее из изучения межфазового обмена при термогравиметрических исследованиях было сделано допущение о существовании гидратов и02р2-2Нг0 и иОгРз-ЗНгО. Сообщается, что эти гидраты могут быть дегидратированы нагреванием до 110°С без потери фтористого водорода . [c.166]

    Для химии урана очень ха рактерно именно образование иона уранила шестивалентный уран, как выше было указано, образует соли — уранаты, в которые он входит в виде аниона урановой кислоты но эти соли не растворяются в воде. В водном растворе шестивалентный уран может существовать, толь- [c.356]

    Ферроцианиды урана мало растворимы и поэтому находят применение в аналитической химии. Их состав сильно зависит от условий получения — от среды, pH раствора, присутствия катионов щелочных металлов (типа ферроцианида), от температуры образования осадка и от его возраста и т. д. Так, И. В. Тананаев с сотрудниками [925—927], подробно изучавшие осадки, образующиеся при взаимодействии уранила с ферроцианидами различных щелочных металлов (Ы, Ыа, К, КЬ, Сз) в водных растворах (или, точнее, системы уранил-ферроцианид щелочного металла — вода), установили образование нормального ферроцианида (и02)2ре(СЫ)б в случае ферроцианидов натрия и лития и двойного ферроцианида в присутствии других щелочных металлов в присутствии калия образуется К4(и02)з[Ре(СМ)б]з- Г. А. Клейбс [928], изучая состав осадка ферроцианида уранила амнеоометрическим методом, нашла, что в присутствии хлорида калия и соляной кислоты образуется двойная соль состава 5(и02)2ре(СН)б ЗК4ре(СЫ)е, а В. Г. Со-чеванов с сотрудниками [929], также применяя амперометрический метод, получал в 1-м. растворе нитрата калия при pH от 3 до 5 осадки, соответствовавшие двойной соли состава K4(U02)2[Fe( N)6]з. [c.358]

    В водных растворах плутоний может находиться в виде следующих простых ионов Ри , Рц " , РиО , РиОг" , РиОз", отвечающих степеням окисления - -3, -]-4, - -5, +6 и - -1. Все эти ионы, кроме РиОз , могут находиться в растворе одновременно в равновесии, что является единственным подобным случаем в химии. Так же как и ионы, образуемые ураном, ионы плутония подвергаются в растворе гидролизу и легко образуют комплексные соединения. [c.388]

    Нитрат тория может экстрагироваться из водных растворов многими органическими экстрагентами. В литературе по аналитической химии описано большое число таких экстрагентов, по единственным экстрагентом, широко применяемым в химических процессах (см. раздел 10.5), является трибутилфосфат. Нитрат тория, будучи в водных растворах сильно ионизованным, образует с ТБФ в органической жидкой фазе нейтральную молекулу, имеющую формулу ТЬ (КЮз) 4 2ТБФ. Таким образом, экстракция протекает более полно, если концентрация ТЬ(МОз)4 высока. В процессе очистки тория в раствор добавляют НМОз или А1(КЮз)з. В этих условиях торий не экстрагируется из водных растворов в столь же значительной степени, как уран (см. раздел 6.4). Для более эффективной экстракции тория из водных растворов необходимо создать более благоприятные, чем для урана, условия экстракции иметь более высокие концентрации ТБФ в растворителе и высаливающих агентов в водной фазе. При низких концентрациях ТБФ уран экстрагируется, а торий остается в водной фазе. На рис. 4.2 показано, что коэффициенты распределения между НКОз и раствором ТБФ урана и тория в области низких концентраций весьма подходящи для их разделения. [c.98]

    Многие соединения урана растворимы в воде или в водных растворах кислот. Поэтому основное внимание при изучении химии растворов урана уделяется поведению урана в водных растворах. Эти растворы представ-ляЮ Т собой элсктрспиты, в которых уран присутствует в виде катиона. Многие соли уран , имеют чрезвычайно высокую растворимость в органических жидкостях, таких, как спирты, эфиры, кетоны и сложные эфйры (производные кислот, водород которых весь или частично замещен спиртовьтм остатком), что обусловливает наличие целого ряда двухфазных равновесий, имеющих большое значение в технологии эти органические жидкости способны селективно извлекать уран из водных растворов, вследствие чего достигается значительная очистка урана. Молекулярные органические соединения урана, описанные в разделе 5.9, и некоторые молекулярные неорганические соединения, включая UFe, более растворимы в неполярных органических жидкостях, чем в других растворнтелях. [c.127]


    При наличии структур (I) и (III) расщепление не должно было бы иметь место. Марки п Мак-Рейнольдс все же обнаружили эффект расщепления, который совместим с наличием структур (II), (IV) и (V), но не дает возможности сделать выбор между этими конфигурациями. Следует отметить, что обнаруженные на опыте углы вращения малы и тем самым результаты оставляют место для некоторых сомнений. В этом нанравлении явно нужны дальнейшие исследования. Актуальным вопросом координационной химии актинидов является также вопрос о том, характеризуются ли ионы тина MeOj всегда линейной структурой или же угол между связями U—О может заметно отклоняться от 180° в зависимости от природы коорди-нированнЪхх лигандов. В водных растворах как производные ионов Ме +, так и производные ионов тина уранила склонны к гидролизу с последующей полимеризацией. Отдельные фазы подобных [c.575]

    Танпип.под названием настойка чернильных орешков применявшийся более ста лет тому назад как реактив для качественною анализа, постепенно вышел из употребления и в начале XX века применялся в металлургическом анализе только в качестве индикатора в молибдат-ном методе определения свинца, по Александеру. Предложенный нами метод отделения тантала от ниобия, опубликованный в 1925 г. [7], положил начало серии исследований, которые показали, что таннин является важнейшим реагентом для количествслного разделения и определения ряда редких и обычных элементов, в особенности элементов группы аммиака, не осаждающихся аммиаком и сернистым аммонием из вич-но кислого раствора. Водный раствор таннина, будучи коллоидальной суспензией отрицательно заряженных частиц, осаждает положительно заряженные частицы гидроокисей металлов полученные адсорбционные комплексы очень хорошо коагулируют и совершенно нерастворимы. Несмотря на большой объем, они легко фильтруются и промываются (особенно при смешивании с бумажной массой) при прокаливании переходят в окислы, удобные для взвешивания. Танниновые комплексы некоторых элементов бесцветны, другие имеют яркие и характерные окраски, что является фактором огромного значения для качественного и количественного анализов. Самым замечательным свойством этих реакций является то, что осаждению не препятствует присутствие органических гидроксикислот винной, лимонной и т, д. В то время как теория взаимодействия таннина с растворами тартратных (и других) комплексов металлов до сих пор неясна, его практическое применение имеет большую ценность в аналитической химии таких редких элементов, как германий, тантал, ниобий, титан, цирконий, торий, ванадий, уран и др. [c.13]

    Большое значение для химии урана имеют его карбонаты. Безводный карбонат иОгСОз, представляющий собой пластинчатые кристаллы светло-желтого цвета, был выделен сравнительно недавно [923] при нагнетании двуокиси углерода в водную взвесь трехокиси урана или в спиртовые растворы уранилнитрата, а также взаимодействием СО2 при нагревании под (давлением с трехокисью урана или диуранатом. Карбонат уранила интересен тем, что образует очень прочные комплексные соединения при растворении в карбонате аммония, играющие большую роль при отделении урана от сопутствующих ему элементов. Комплексные карбонаты подробнее рассматриваются ниже, в разделе о комплексных соединениях урана. [c.357]

    Экстракцию оксихинолината вольфрама широко применяют в аналитической химии. Эберле [618] применял экстракцию для фотометрического определения вольфрама в сталях, цирконии, циркалое, уране и бериллии. Для отделения молибдена вначале экстрагируют при pH 2 оксихинолинат молибдена из фторидного раствора, затем вводят борную кислоту и экстрагируют 8-окси-хинолинат вольфрама. Виноградов и Дронова [67] экстрагировали 8-оксихинолинат вольфрама смесью хлороформа с бутанолом (2 1) в присутствии молибдена, связанного в комплексонат после его восстановления гидразином. Кислотность водной фазы — pH 2—3. При содержании молибдена 100, 200 и 500 мг он экстрагируется хлороформом в количестве 0,125—0,205, 100—0,425 и 0,150 — 1,5 мг соответственно. [c.64]


Смотреть страницы где упоминается термин Химия водных растворов урана: [c.192]    [c.74]    [c.262]   
Смотреть главы в:

Современная неорганическая химия Часть 3 -> Химия водных растворов урана




ПОИСК







© 2024 chem21.info Реклама на сайте