Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбционный комплекс

    Простейшее уравнение полимолекулярной адсорбции было выведено исходя из того, что при адсорбции пара молекулы, попадая на уже занятые места, не покидают их немедленно, но образуют кратные адсорбционные комплексы (рис. XVI, 7). По мере приближения значения р к сокращается число свободных мест, растет, а затем сокращается число мест, занятых единичными комплексами, потом двойными комплексами, тройными комплексами и т. д. При выводе уравнения изотермы полимолекулярной адсорбции пара пренебрежем взаимодействиями между молекулами адсорбата в адсорбционном слое [c.450]


    Если пренебречь взаимодействиями адсорбат—адсорбат и влиянием образовавшихся адсорбционных комплексов на соседние свободные места, то константа равновесия этой реакции [c.443]

    Основной задачей изучения каталитического процесса на гетерогенных катализаторах является нахождение связи между каталитической активностью, химическим составом и характером промежуточного поверхностного взаимодействия катализатора с реагирующими веществами. Знание природы промежуточного взаимодействия реагирующих веществ с катализатором, характера активных центров, закономерностей протекания реакции позволяет вести целенаправленный подбор избирательно действующих катализаторов и выдвигать теоретические предположения о механизме отдельных типов каталитических реакций. В связи с этим необходимо систематическое исследование новых и известных каталитических систем и природы их действия (характера адсорбции на каталитической поверхности компонентов реакции, природы промежуточного адсорбционного комплекса). [c.31]

    Инфракрасные спектры поверхностных соединений и адсорбционных комплексов [c.504]

    Наличие дипольных моментов у адсорбционных комплексов влияет на структуру и структурно-механические свойства паст и суспензий, а также частично и на процессы твердения вяжущих веществ. Две формы связей воды с поверхностью твердых частиц (адсорбционная и свободная) оказывают влияние и на процессы сушки сырьевых смесей. [c.260]

    Третья стадия процессов окисления — передача электронов от донора к акцептору (от реагента к кислороду), в отличие от первых двух, является специфичной для гетерогенного катализа и связывает его с проблемами физики твердого тела. Принципиально проблема подвижности электронов в адсорбционном комплексе не отличается от проблемы подвижности электронов внутри молекулы, поскольку такая подвижность обусловливает реакционную способность системы. Действительно, реакцию окисления какого-либо соединения, например 80-2, на твердом катализаторе можно себе представить в виде [c.28]

    Скорость гетерогенной химической реакции определяется скоростью образования или разрушения адсорбционного комплекса. [c.159]

    Для оптимального катализатора, т. е. для максимальных скоростей реакции, должно иметь место равенство констант образования и разрушения адсорбционного комплекса. [c.159]


    Образование адсорбционного комплекса на поверхности данного адсорбента и выделение теплоты смачивания связано, как [c.66]

    Н. А. Изгарышев и П, С. Титов впервые (1917 г.) изучили влияние поверхностно-активных веществ (желатина, гуммиарабика) на электроосаждение цинка и меди. Они высказали предположение, что дисперсные частицы органического вещества образуют с разряжающимися ионами металла адсорбционные комплексы, для разряда которых требуется повышенная катодная поляризация. [c.345]

    Согласно существующим иредставлениям, число мест в поверхностном слое, на которых могут размещаться адсорбированные молекулы, ограничено. Поэтому концентрация молекул адсорбата в мономолекулярном слое Са может достигать предельного значения с . При этом все пригодные для адсорбции данного вещества места на адсорбенте оказываются занятыми. Влияние этого фактора можно рассмотреть, сделав предположение о том, что молекулы адсорбируются только на свободных местах поверхности и образуют адсорбционный комплекс. Такая адсорбция называется локализованной в отличие от н е-локализованной, при которой молекулы адсорбированного вещества могут свободно перемещаться по иоверхности. Если пренебречь взаимодействием адсорбированных молекул между собой, а также влиянием адсорбционных комплексов на соседние свободные места поверхности, то для реакции [c.99]

    Для вывода этого уравнения применительно к адсорбции газа представим локализованную адсорбцию как квазихимическую реакцию между молекулой газа и активным центром адсорбента, в результате которой образуется адсорбционный комплекс, т. е. молекула адсорбтива, адсорбированная адсорбентом молекула газа + активный центр адсорбента адсорбционный комплекс [c.90]

    Таким образом, адсорбированная фаза может быть представлена как совокупность адсорбционных комплексов — молекулярных цепочек, начинающихся молекулами первого слоя, непосредственно связанных с поверхностью адсорбента. При этом цепочки энергетически не взаимодействуют друг с другом. Схема строения адсорбционного слоя по теории БЭТ показана на рис. IV, 8. [c.97]

    Брунауэр, Эммет и Теллер при выводе уравнения рассматривают адсорбцию молекул пара как серию квазихимических реакций образования единичных и кратных адсорбционных комплексов  [c.98]

    Поскольку сумма занятых и свободных мест (если учитывать, что каждое свободное место может образовать один адсорбционный комплекс) постоянна и равна общему числу мест, то [c.334]

    Подход к анализу полимолекулярной адсорбции основан на предположении о том, что при адсорбции пара его молекулы, попадая на занятые места, образуют кратные адсорбционные комплексы (рис. 68). По мере приближения к условию (Х1П.44) число свободных мест уменьшается, далее растет, а затем уменьшается число единичных адсорбционных комплексов, затем двойных, тройных комплексов и т. д. [c.337]

    Концентрация молекул в газовой фазе пропорциональна давлению р концентрация свободных центров пропорциональна величине (а , — а) концентрация занятых центров (адсорбционных комплексов) пропорциональна величине а. Поэтому константа равновесия этой реакции (обозначим ее через Ь) равна  [c.217]

    В первой части описывается химия поверхности и адсорбционные свойства основных неорганических и органических адсорбентов (от таких одноатомных непористых и однородных, как графитированные сажи, до пористых органических полимеров), адсорбционное и химическое модифицирование поверхности адсорбентов, спектроскопическое исследование поверхностных соединений и адсорбционных комплексов. В этой части устанавливается качественная связь структуры молекул с адсорбционными свойствами, ярко проявляющаяся в хроматографии. [c.3]

    Адсорбционный комплекс, состоящий из адсорбента вместе с поглощенной частью адсорбтива, называется адсорбатом. Поверхность адсорбата по своему составу отличается от состава внутренних слоев как адсорбента, так и адсорбтива. При адсорбционном равновесии пограничный (межфазный) слой можно рассматривать как некоторую отдельную переходную фазу, имеющую толщину порядка молекулярных размеров. [c.108]

    Для вывода уравнения изотермы монослойной локализованной адсорбции рассмотрим обратимый процесс молекула газа- свободное место на поверхности адсорбента р локализованный адсорбционный комплекс [c.135]

    Скорость десорбции Уд пропорциональна степени заполнения поверхности адсорбента, так как десорбция идет только с занятых адсорбционным комплексом мест поверхности  [c.135]

    Конец реакции между иодом и тиосульфатом устанавливают ло изменению окраски специфического индикатора — крахмала, который образует с иодом адсорбционный комплекс синего цвета. Индикатор очень чувствителен, с его помощью можно обнаружить иод в концентрации 10 н. Крахмал надо добавлять в титруемый раствор вблизи точки эквивалентности (соломенно-желтая окраска), поскольку растворимость иодокрахмального комплекса в воде мала и высокие концентрации иода разрушают крахмал, причем образуются продукты, являющиеся неполностью обратимыми индикаторами. [c.181]


    Поверхностные состояния характеризуются высотой локализованных вблизи поверхности электронных энергетических уровней они связаны с поверхностными центрами, существующими на чистой поверхности (о которых шла речь выше) или возникающими в процессе образования адсорбционных комплексов, однако способы трактовки пока не объединены. В современных теориях адсорбции существует два различных диалектически противоречивых подхода — метод локальных и метод коллективных взаимодействий [И]. [c.129]

    Число мест на поверхности, на которых могут разместиться молекулы адсорбата, ограничено. Иными словами, концентрация Са В мономолекулярном слое может быть повышена лишь до некоторого предельного значения при котором все места, пригодные для адсорбции данного вещества, уже заняты. Влияние этого фактора на вид изотермы адсорбции проще всего рассмотреть, предполагая, что молекулы адсорбируются только на свободных местах поверхности адсорбента, с которыми они образуют адсорбционный комплекс. Связь с адсорбентом может быть при этом химической или физической, но достаточно сильной для того, чтобы молекула не перемещалась вдоль поверхности. В этой случае наблюдается локализованная адсорбция в отличие от нело-кализованной, когда молекулы адсорбата могут свободно перемещаться вдоль поверхности адсорбента. Так как поверхность адсорбента состоит из атомов, ионов или молекул, то для перемещения молекулы вдоль поверхности необходимо преодолевать потенциальные барьеры (см. схему на рис. XVI, 3). Поэтому при низ-ких температурах физически адсорбирующиеся молекулы преимущественно локализованы, а при высоких—не локализованы. Химически адсорбирующиеся молекулы локализованы. [c.443]

    Отравление ионами металлов свойственно платиновым, палладиевым и другим катализаторам из металлов VIII группы и благородных металлов других групп. Было обнаружено, что каталитическая активность платиновых и палладиевых катализаторов гидрирования понижается в присутствии ионов ртути, свинца, висмута, олова, кадмия, меди, железа и других. Сравнение токсичности ионов различных металлов по отношению к платиновым катализаторам гидрирования приводит к заключению, что токсичность свойственна, по-видимому, тем металлам, у которых все пять орбит d-оболочки, непосредственно следующих за s- и р-валептными орбитами, заняты электронными парами или по крайней мере одиночными -электронами. По мнению Мэкстеда, отсюда вытекает, что отравление платины и подобных ей катализаторов ионами металлов включает, вероятие, образование адсорбционных комплексов, которые можно рассматривать как интерметаллические соединения с участием d-электронов в образовании интерметаллических связей. [c.54]

    Противоположно заряяешше адсорбированные на поверхности никеля молекулы водорода и окиси углерода взаимодействуют меаду собой, т.е. реакция протекает по механизму Лэнгмвра. Первичным продуктом такого взаимодействия являются адсорбционные комплексы типа енольной формы формальдегида [ -/> которые затем восстанавливаются до метиленовых радикалов и далее гидрируются в метан. [c.199]

    Можно провести много аналогий между гетерогенным ката лизом при полимеризации олефинов и тем способом, которьш осуществляется катализ природных химических реакций, в ча стности ферментативный катализ. Действительно, гетерогенны катализ во многих отношениях напоминает ферментативный. Мо лекула субстрата сталкивается с активным центром на поверхно сти твердого катализатора, образуя адсорбционный комплекс Адсорбированный субстрат реагирует в одну или несколько ста дий под влиянием каталитических групп активного центра. на конец продукт десорбируется (пли удаляется) из активного цент ра. Таким образом, и для ферментативного, и для гетерогенного катализа говорят об активном центре и образовании комплекса субстрата с активным центром. Осмысление этих понятий помогает сопоставить неферментативный и ферментативный катализ. Тем не менее существует и принципиальное различие, поскольку большипстпо ферментов несут только один активный центр па молекулу, тогда как в гетерогенных катализаторах на одну ча- [c.198]

    Если специфическая адсорбция ионов на поверхности электрода является обратимой, то форма спектров AR/Ro—X при этом обычно ие изменяете , а изменение кривых AR/Ro—Ео при = onst может быть связано с соответствующим изменением емкости. Поэтому сильное искажение спектров электроотражения может служить указанием на образование химических соединений. Такие данные были получены в водных растворах KI при больших анодных потенциалах серебряного и золотого электродов. При этом на кривых AR/Ro—I в области энергии квантов света h =h / k, соответствующей энергии диссоциации соединения Ме—1, наблюдался минимум. Аналогичные минимумы наблюдались в спектрах электроотражения р-полярпзованного света от поверхности свинцового и индиевого электродов при адсорбции на них молекул анилина. Они были связаны с частичным переходом л-электронов ароматического ядра в незаполненную зону проводимости металла при образовании адсорбционного комплекса с переносом заряда. [c.184]

    Поверхность адсорбента, на которой могут размещаться молекулы адсорбата, ограничена. При условии мономолекулярности адсорбционного слоя ограничена и его толщина I. Поэтому величина адсорбции не может превышать предельного значения Г = Г а д. Изотерма адсорбции на однородной поверхности адсорбента была выведена американским ученым Дж. Лэнгмюром. Он предполагал, что адсорбция локализована и идеально обратима. Согласно этому предположению молекулы газа адсорбируются только на свободных от адсорбата местах поверхности адсорбента, в то время как десорбция молекул осуществляется только с занятых мест. Связь адсорбата с адсорбентом должна быть достаточно прочной для того, чтобы адсорбционный комплекс не перемещался вдоль поверхности адсорбента (локализованная адсорбция). [c.139]

    Степень адсорбции ионов электролитов частицами различных минералов неодинакова. Минералы, в которых между структурными элементами решеток действуют преимущественно близкодействующие ковалентные связи (кварц, глинистые минералы) с небольшой долей ионной составляющей (определяется степенью замещения кремния алюминием в полимерных каркасах, слоях) и с малой плотностью ее, характеризуются меньшей степенью воздействия на ионы электролитов. Наоборот, решетки, в которых связь между ее элементами преимущественно ионная (дальнодействующая) и плотность распределения зарядов по поверхности высокая (Са +СОз -, Мд +СОз - и др.), будут сильнее воздействовать на заряженные частицы электролитов. Таким образом, избирательная способность к ионам солей у известняков (а также у полевых шпатов, гематита) выше, чем у кварца и глинистых минералов. Кроме того, поскольку катионы обычно состоят из одной частички, имеющей малый размер и большую подвижность, а анионы чаще всего являются радикалами (СОз -, 5042") более крупных размеров и меньшей подвижности, на поверхности твердых тел быстрее адсорбируются катионы, чем анионы. Какая-то часть катионов Ыа+, К+, Са +, Mg2+ избирательно адсорбируется (в порядке Мд>Са>ЫаЖ) под действием поверхностной энергии Гиббса в первую очередь на поверхности зерен известняка, полевого шпата, затем кварца, сообщая этим зернам положительный заряд. Под непосредственным воздействием этих ионов на поверхности частиц упорядочиваются молекулы ПАВ и воды, создавая вместе с ионами адсорбционную оболочку вокруг зерен. Наличие положительных зарядов на таких адсорбционных комплексах (известняк —катионы — ПАВ — вода) приводит к тому, что вокруг них ориентируются отрицательно заряженные глинистые частицы и ионы 8042-, НСО3-, тоже предварительно адсорбировавшие на себе молекулы ПАВ и воды. Какая-то часть ионов Ыа+, К+, Mg +, Са2+ и 5042-, НСО3- остается в гидратированном виде в жидкой фазе. Таким образом, в суспензии действуют силы электростатического притяжения и отталкивания крупных адсорбционных комплексов (известняк —катионы —ПАВ — вода), мелких катионов и анионов, дипольные взаимодействия между униполярными комплексами, водородная связь между молекулами воды. Свободная же вода, разделяющая все частицы друг от друга, обеспечивает текучесть суспензии. [c.286]


Библиография для Адсорбционный комплекс: [c.352]   
Смотреть страницы где упоминается термин Адсорбционный комплекс: [c.439]    [c.443]    [c.444]    [c.448]    [c.448]    [c.61]    [c.63]    [c.29]    [c.106]    [c.116]    [c.99]    [c.103]    [c.334]    [c.337]    [c.139]    [c.142]    [c.273]   
Инженерная химия гетерогенного катализа (1965) -- [ c.38 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбционные комплексы равновесия

Азокрасители образование адсорбционных комплексов на окиси магния

Вольфрамовая кислота адсорбционные комплексы

Зайнуллин В.Ф. Комплекс мероприятий по обеспечению стабильной работы адсорбционных установок подготовки газа в период падающей добычи

Инфракрасные спектры адсорбционных комплексов и поверхностных соединений

Инфракрасные спектры поверхностных соединеиий и адсорбционных комплексов

Квантовомеханические модели поверхностей твердых тел, адсорбционных комплексов и гетерогенно-каталитических реакций. Примеры расчетов

Магний образование адсорбционных комплексов на гидроокиси

Металлы, анодное растворение образование промежуточных адсорбционных комплексов

Методы обнаружения магния по образованию окрашенных комплексов или адсорбционных соединений

Методы обнаружения магпия по образованию окрашенных комплексов и адсорбционных соединений

Модель адсорбционного комплекса

Характеристика фракций, полученных при адсорбционном разделении на угле углеводородов, не образующих комплекса с карбамидом

комплексы Муда адсорбционные соли

устойчивости адсорбционных комплексов



© 2024 chem21.info Реклама на сайте