Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Температура образование осадка

    При определении термоокислительной стабильности топлива в динамических условиях на установке ДТС в пристеночном слое при повыщенных температурах образуются пары топлива, в которые диффундирует растворенный в топливе кислород. Образуется указанная выще двухфазная система, объясняющая уменьшение осадка при повышенных температурах. Образование осадков зависит от содержания в газовой фазе кислорода (рис. 5.9) и снижается при замене воздушной среды на азотную (рис. 5.10). Динамика забивки контрольных фильтров при прокачке различных топлив в зависимости от температуры приведена на рис. 5.11 и 5.12. [c.161]


    Начальная температура образования осадков, засоряющих фильтр, является практически предельно возможной температурой применения данного топлива. При нагревании изменяется качество топлива вследствие окисления углеводородов, что приводит к увеличению кислотности и содержания смол в топливе. Для товарных [c.555]

    При начальных температурах образования осадков (120—140° в зависимости от типа топлива) фильтры забиваются очень мелкими частицами светло-серого цвета, проникающими в поры фильтра и почти незаметными на его поверхности. При более высоких темпе- [c.558]

    Наблюдение за поведением двух различных образцов топлив прямой перегонки показало, что ухудшение термической стабильности при хранении выражается прежде всего в снижении начальной температуры образования осадков (табл. 177). [c.567]

Рис. 157. Зависимость удельного сопротивления вдоль базисной плоскости пироуглерода от температуры образования осадка [98]. Рис. 157. <a href="/info/869526">Зависимость удельного</a> сопротивления вдоль базисной плоскости пироуглерода от <a href="/info/89758">температуры образования</a> осадка [98].
    Начальная температура образования осадков, засоряющих фильтр, является практически предельно возможной температурой применения данного топлива. [c.69]

    Термическая стабильность топлива характеризует его устойчивость к образованию осадков при нагревании в присутствии воздуха и металлов. Она имеет особо важное значение для топлива сверхзвукового самолета. Под действием высоких температур и каталитического влияния металлов в топливе могут происходить глубокие химические изменения с образованием осадков в виде жидких и твердых веществ. [c.29]

    Важнейшими эксплуатационными показателями термической стабильности топлива являются минимальная температура, при которой в топливе начинают образовываться нерастворимые осадки температура максимального осадкообразования скорость образования осадков (скорость нарастания перепада давления на фильтре вследствие забивания его нерастворимыми осадками). [c.30]

    Например, при изготовлении смешанных катализаторов на основе окислов металлов VHI группы раствор нитратов таких металлов смешивают с карбонатом натрия при температуре 75° С, что приводит к образованию осадка, который промывают. Только после этого полученный материал направляют на смешение. В другом случае осадок получают при добавлении карбоната калия к раствору нитратов металлов (никеля и др.), содержащего гидроокись алюминия. Полученную массу отфильтровывают, промывают, сушат и прокаливают. И только после этого полученный материал направляют на смешение и последующую переработку. Иногда часть полученною катализатора после высокотемпературной прокалки измельчают и возвращают в цикл, направляя на стадию смешения с исходными материалами. [c.21]


    Испытания трансформаторных масел, помимо побочных показателей (температура вспышки и застывания, вязкость, диэлектрические свойства [112] и т. д.), включают в себя ускоренную пробу на окисление с целью определить вероятный срок эксплуатации масла. Для проведения этой пробы был предложен целый ряд методов [113—115]. Почти все они предусматривают нагревание масла в воздухе или кислороде при температуре около 120° обычно в присутствии меди в качестве катализатора окисления. При этом наблюдается изменение цвета, поверхностного натяжения [116, 117], кислотности, коэффициента мош,ности, образование осадка и воды [118—123]. [c.567]

    Степень старения масла оценивается по нарастанию его вязкости и образованию осадка, не растворимого в легком бензине (петролейном эфире), после окисления масла в приборе типа ДК-2 НАМИ в течение 50 ч при температуре 200° С. [c.148]

    Исследования в области стабилизации прямогонных реактивных топлив были направлены в основном на изучение возможности применения антиокислительных присадок для понижения склонности топлив к образованию осадков при термоокислении в топливных системах. Было установлено, что введение в топливо антиокислителей на основе ароматических аминов и фенолов в концентрациях 0,05—0,1% (масс.) позволяет снизить осадкообразование при температурах ниже 150°С. При более высоких температурах положительное действие этих антиокислителей не проявляется. Поэтому такой способ стабилизации прямогонных топлив практического применения не нашел., В СССР, а также за рубежом для понижения склонности реактивных топлив к осадкообразованию проводится их гидрогени-зационная обработка. [c.23]

    В табл. 5.5 и на рис. 5.7 представлены данные по образованию осадков в статических условиях и на рис. 5.8 — скорость изменения перепада давления на контрольном фильтре при прокачке в зависимости от температуры. Видно, что в области температур 160—180 °С наблюдается максимум как по образованию осадков, так и по интенсивности забивки фильтра. Из данных табл. 5.5 следует также, что при повышении температуры возрастает доля крупных частиц. Отмечается, кроме того, что в процессе образования осадков всегда наблюдается и образование смол. [c.160]

    Образование и отложение кокса на внутренней поверхности печных труб представляют со ой сложные процессы, зависящие от многих факторов. В нагревательных печах тепловой режим отдельных зон должен устанавливаться с учетом физико-хими-ческих свойств углеводородного сырья и скоростей движения его потоков. В высокотемпературной зоне прямогонной печи при испарении нагретого сырья жидкая фаза потока утяжеляется (так как прежде всего испаряются низкокипящие фракции) и создаются условия для образования осадков солей, которые отлагаются на поверхности труб, увлекая за собой частицы смол и асфальтенов. Возникшие зародыши кокса становятся ядрами дальнейшего коксообразования. Чем больше солей, тем больше центров коксообразования. Некоторые соли являются не только зародышами коксоотложений, но и, вероятно, обладают каталитическим действием, поскольку при нагреве сырья с повышенным содержанием солей температура начала интенсивного коксообразования снижается. [c.273]

    Отмечено, что при разделении суспензий в процессе депарафи-низации масел с использованием в качестве растворителя пропана наблюдаются отклонения от закономерностей фильтрования с образованием осадка [234]. Отклонения объяснены закупориванием пор осадка пузырями, возникающими при испарении пропана. Обсуждено влияние растворимости, концентрации суспензии, температуры, давления, пористости и размера пор на степень закупори- [c.206]

    Если нагреваемым продуктом в трубах является жидкость и нет необходимости учитывать образование осадка, средняя температура поверхности труб бывает на 20—50° С выше средней температуры жидкости. В случае, если предполагается возникновение осадка (кокса), в расчете учитывается толщина осадка 2 мм. [c.76]

    В соответствии с отечественной индексацией моторных масел их оценку нужно проводить на определенных типах двигателей по утвержденным методам испытаний. Стендовые моторные испытания на полноразмерны-х двигателях бывают краткосрочными и длительными. Для сокращения времени испытания опытного образца масла на одноцилиндровых установках условия работы масла ужесточают. Обычно это достигается путем повышения температурного режи.ма работы двигателя — температуру охлаждающей жидкости и масла повышают до 120—130°С. Для оценки поведения масла при его работе в недостаточно прогретом двигателе (такие режимы возникают при движении автомобиля по городу) и для определения склонности масла к образованию осадка при низкой температуре проводят испытания, ири которых температура охлаждающей жидкости и масла не превышает 50 °С. [c.217]


    Для обеспечения высокой химической стабильности в авиационных бензинах ограничивается значение йодного числа (не более 2—12 г иода на 100 г бензина), фактических смол (не более 2—5 мг на 100 мл бензина) для предотвращения разложения ТЭС и образования осадков предусматривается обязательное добавление антиокислителя. Авиабензины не должны выделять кристаллов парафина и льда прп низких температурах. С этой целью в авиационных бензинах устанавливается температура начала кристаллизации не выше —60° С и ограничивается содержание ароматических углеводородов, обладающих наибольшей гигроскопичностью. [c.70]

    ММ бензиновые двигатели с умеренным и жестким режимами работы, способствующими образованию осадков, коррозии подшипников, п с высокой температурой масла в картере. [c.356]

    Не влияет на вязкость при нормальной температуре. При повышенных температурах действует как селективный растворитель вызывает образование осадков Химически не взаимодействует понижает вязкость масла может вызвать вспенивание масла [c.491]

Таблица 28. Влияние температуры начального разбавления на время до образования осадков парафина при вакуумной фильтрации и на его свойства Таблица 28. <a href="/info/1445463">Влияние температуры начального</a> разбавления на время до <a href="/info/214385">образования осадков</a> парафина при <a href="/info/1420219">вакуумной фильтрации</a> и на его свойства
    Пример 9.1. Расчет маслоохладителя судового двигателя. Расчет теплообменника для охлаждения смазочного масла кру]шого дизельного судового двигателя содержит типичный комплекс задач, которые приходится решать при расчете кожухотрубного теплообменника. Температуру масла, чтобы уменьшить его окисление и предотвратить образование осадка в машине, нужно поддерживать ниже 65 С. С другой стороны, нельзя допускать, чтобы температура масла падала ниже 54 С, иначе в результате повышенной вязкости будет происходить более интенсивная коррозия от влаги, содержащейся в масле. [c.183]

    Важнейшим эксплуатационным свойством масел, определяющим продолжительность их работы, является стабильность против окисления. В процессе эксплуатации (масел под воздействием кислорода воздуха, высоких температур, нагрузок, каталитического действия металлов углеводороды, входящие в состав масел, подвергаются окислению, деструкции, полимеризации и ряду других химических превращений. При этом вследствие образования и накопления кислородсодержащих соединений и углеродистых продуктов уплотнения изменяется состав масел и ухудшаются их эксплуатационные свойства. Продукты окисления плохо растворимы в маслах, способствуют образованию осадков и нагаров, вызывают коррозию и усиливают износ деталей. С целью предотвращения или уменьшения окисляемости масел при хранении и эксплуатации широко применяют антиокислительные присадки.  [c.302]

    Возможность инициирования осадкообразования кристалликами, появляющимися на более холодной, чем поток, поверхности, принципиальных возражений вызвать не может, и такое обоснование начальной стадии осадкообразования безусловно имеет право на существование. Однако оно не может объяснить все наблюдающиеся экспериментальные и практические факты. Так, специальными опытами было показано /22/, что образование осадков за сравнительно короткое время происходит и в том случае, когда температура поверхности и жидкости в объеме не различаются. Эти данные позволяют предположить реальную возможность формирования первоначального слоя за счет закрепления на поверхности дисперсных час- [c.64]

    Антиокислители способны снижать образование осадков в топливах только до определенного предела температур [3, 36]. Так, ионол улучшает фильтруемость топлива при 150 °С (рис. 20), но при 180 °С практически не оказывает на нее влияния. То же отмечено и при исследовании статическим методом п-оксидифениламина и ионола при 150 °С они снижают содержание осадка с 15 до 4—5 мг/100 мл, а при 175—200°С не эффективны. Это связано как с термической стабильностью и окисляемостью самих присадок, так и (главным образом) с механизмом процессов, приводящих к выделению осадков при высоких температурах [36, 87]. При температурах выше 150 °С, как правило, осадки выделяются с большой скоростью вследствие окисления смолистых веществ и разрушения коллоидной системы продукты окисления — топливо. Этот процесс не контролируется антиокислителями, поэтому при более высоких температурах образование осадков уменьшается только [c.100]

    Ферроцианиды урана мало растворимы и поэтому находят применение в аналитической химии. Их состав сильно зависит от условий получения — от среды, pH раствора, присутствия катионов щелочных металлов (типа ферроцианида), от температуры образования осадка и от его возраста и т. д. Так, И. В. Тананаев с сотрудниками [925—927], подробно изучавшие осадки, образующиеся при взаимодействии уранила с ферроцианидами различных щелочных металлов (Ы, Ыа, К, КЬ, Сз) в водных растворах (или, точнее, системы уранил-ферроцианид щелочного металла — вода), установили образование нормального ферроцианида (и02)2ре(СЫ)б в случае ферроцианидов натрия и лития и двойного ферроцианида в присутствии других щелочных металлов в присутствии калия образуется К4(и02)з[Ре(СМ)б]з- Г. А. Клейбс [928], изучая состав осадка ферроцианида уранила амнеоометрическим методом, нашла, что в присутствии хлорида калия и соляной кислоты образуется двойная соль состава 5(и02)2ре(СН)б ЗК4ре(СЫ)е, а В. Г. Со-чеванов с сотрудниками [929], также применяя амперометрический метод, получал в 1-м. растворе нитрата калия при pH от 3 до 5 осадки, соответствовавшие двойной соли состава K4(U02)2[Fe( N)6]з. [c.358]

    Большую склонность к осмолению форсунок проявляют сернистые дизельные топлива, содержащие более 0,5% (масс.) серы. Характерно, что имеется определенная температура форсунок, при которой наблюдается максимум отложений. Высокотемпературные отложения на деталях форсунок представляют собой продукты окисления в основном гетероорганических составляющих топлив и нестабильных непредельных углеводородов. Эти отложения наряду со смолистыми веществами содержат значительную долю (40—50%) твердых частиц карбоидного характера [65]. В твердой, не растворимой в органических раство-рителвх части отложений содержатся минеральные вещества, представляющие собой продукты коррозии (оксиды металлов) и загрязнения. Карбоидные составляющие осадков, образующихся в топливах при высокой температуре, представляют собой агрегаты из твердых частиц коллоидных размеров, скрепленных смолистыми продуктами окисления. Процессы высокотемпературного окисления, приводящие к образованию осадков, протекают по механизму, аналогичному для низкотемпературного окисления, но со значительно большими скоростями. [c.63]

    Фтористый водород. Подобно серной 1шслоте безводный фтористый водород является прекрасным катализатором алкилирования изопарафиновых углеводородов пропиленом и более высокомолекулярными олефинами [25]. И в этом случае разбавление водой и взаимодействие с сильно непредельными углеводородами, приводящее к образованию осадка, снижают активность катализатора. При использовании катализатора, содержащего 1% воды, в процессе алкилирования изобутана пропиленом при температуре 25° выход алкилата составлял 214% вес. (на пропилен) при проведении же этого процесса с катализатором, содержащим 10% воды, образовывался изопропилфторид и практически не получалось алкилата. При алкилировании к-бутилена в присутствии катализаторов, содержащих 1,0% и 10% воды, был получен алкилат с выходами 199 и 192% соответственно, в присутствии же катализатора, содергкавшего 26% воды, получался вто/)-бутилфторид и небольшое количество алкилата. [c.311]

    Добавление тетрабутиламмонийхлорнда к водному раствору СгОз приводит к образованию осадка, представляющего собой Bu4N+H r04 . Хотя этот реагент, по-видимому, должен быть устойчив при комнатной температуре, однако следует принимать меры предосторожности на случай непредвиденного взрыва. Этот реагент окисляет в кипящем хлороформе вторичные спирты до кетонов (3—12 ч), а аллильные и бензильные спирты до альдегидов (1—4 ч) [1198]. Другим эффективным окислителем [c.399]

    Влияние механических примесей на образование осадков при окислении реактивных топлив, в том числе гидрогенизационных, отмечается в работе [348]. Более подробно этот вопрос рассмотрен в работе [349]. Авторы изучали кинетику образования твердой фазы при окислении топлив прямогонного ТС-1 и гид-рогенизационного Т-6 в интервале температур 120—160°С при недостатке кислорода (окисление растворенным кислородом в замкнутом объеме — в ампулах) и при его избытке (стандартный прибор ТСРС-2 и барботажное окисление). В первом случае имитировалось термоокисление топлив в топливных системах газотурбинных двигателей. Опыты проводили с образцами топлива нефильтрованными и подвергнутыми специальной фильтрации на мембранных фильтрах № 3 и 4 (тонкость фильтрации 1 мкм). [c.253]

    В ГрозНИИ разработан процесс, совмещающий обезмасливание парафинового дистиллята с фракционной кристаллизацией парафина, предусматривающий полный противоток растворителя по отношению к сырью и позволяющий получать широкий ассортимент парафинов с температурой плавления от 45 до 68 °С [75, 76]. Этот процесс включает три ступени фильтрования, предназначенные для получения глубокообезмасленного парафина с температурой плавления 52—54 °С, который затем подвергают фракционной кристаллизации на четвертой и пятой ступенях фильтрования. Такой процесс позволяет получить высокоплавкий парафин с температурой плавления до 58°С и низкоплавкий — с температурой плавления 50—52 °С. Одним из условий эффективности этого процесса является ограниченное содержание масла в растворителе. Достоинством его является не только гибкость, но и повышенное содержание нормальных парафиновых углеводородов как в высокоплавком (95,8% масс.), так и в низкоплавком (92,1% масс.) парафинах. Это объясняется раздельной кристаллизацией твердых углеводородов, при которой изопарафины с длинными прямыми участками цепи и нафтены с длинными боковыми цепями кристаллизуются в последнюю очередь. Разработке процесса обезмас-ливания с последующей фракционной кристаллизацией парафина предшествовали теоретические исследования [7, 64], в результате которых предложены уравнения, позволяющие с учетом требуемой глубины обезмасливаиия парафина и содержания масла в исходном сырье определять среднюю концентрацию масла в жидкой фазе и затем оценить коэффициент концентрирования на каждой стадии вакуумного фильтрования (образование осадка, его холодная промывка и подсушка), а следовательно, и общий концентрирующий эффект вакуумного фильтра. [c.160]

    VII. Основные технологические параметры ХТП и производства. В этом разделе наряду с указанием для каждого ХТП и аппарата основных технологических параметров (давление, температура, объемная и линейная скорости, степень насыщения, степень диспергирования, концентрации веществ в растворах, скорости расслаивания, размеры газанул и кристаллов, допустимое влагосодер-жание) отмечаются технологические условия приготовления и регенерации катализаторов, адсорбентов, растворителей и реагентов, которые осуществляются на данном объекте химической промышленности. Кроме того, приводятся сведения о механической прочности и гидравлическом сопротивлении применяемых катализаторов и адсорбентов условия образования осадков, полимеров и пены, методы предотвращения их образования и методы их удаления рекомендации по характеру перемешивания жидкостных сред рекомендации по значениям флег-мовых чисел и плотностей орошения для специальных процессов разделения [c.19]

    В последние годы УкрНИИхиммаш создан камерный автоматический фильтрпресс — ФПАК (рис. 4-19), предназначенный для фильтрования суспензий с содержанием твердой фазы 10—400 г/л при температурах 5—60° С. ФПАК представляет собой набор фильтрующих плит 2, расположенных горизонтально расстояние меисду ними 25 мм. Верхняя часть фильтрующей плиты покрыта щелевым ситом. В иижней ее части имеется коническое днище, из которого выводится фильтрат. По контуру плиты в нижней части закреплен резиновый замкнутый уплотнительный шланг 1, который может перекрывать щели между плитами. При подаче в шланг воды под избыточным давлением 8—10 ат форма сечения его меняется (см. рис. 4-19, 1а и 16) и он прижимает фильтрующую ткань 3 к плите при этом между плитами образуется камера, в которую подается суспензия. После завершения стадии фильтрования и образования осадка давление воды снимается и шланг сжимается, открывая щель для выхода ткани с осадком. [c.81]

    В качестве антиокислителей для реактивных топлив успешно исследованы вещества более сложного строения и большей молекулярной массы, чем обычные топливные антиокислители [3, 77, 81, 83, 84]. Так, 3,5-ди-грет-бутил-4-оксибензилмеркаптан снижает образование осадка и растворимых продуктов окисления при температурах до 180 °С в топливах различного типа [77]. Положительный результат получен также с 2,6-диами-но-4-трег-бутилфенолом при стабилизации топлива Т-1 [81] и другими соединениями относительно сложного строения [82, 84]. В качестве эффективных антиокислителей указаны бисфенолы [4, V. 2, сИ, 17 89, 90] в ча- [c.101]

    На самолетах других типов, а также при наличии в топливе другого деактиватора металла — Ы,Ы -дисалици-лиден-1,2-пропилендиамина—образования осадков не наблюдалось. Исследования показали (табл. 31), что растворимость при низких температурах хелатов меди производного пропилендиамина на 2 порядка выше, чем хелатов производного этилендиамина. [c.136]

    Целесообразным и экономичным способом улучшения термической стабильности топлива Т-1 является также введение в него специальных присадок. Проведены широкие исследования присадок, повышающих термическую стабильность отечественных прямогонных реактивных топлив Т-1, ТС-1 и Т-2 2—5]. В результате этих исследований было установлено, что такие антиокислители, как фенолы, алкилфенолы, амино-фенолы и др., применяемые для повышения химической стабильности бензинов и увеличения их сроков хранения, недостаточно эффективны в качестве присадок, улучшающих термическую стабильность реактивных топлив. Так, ионол замедляет образование осадков в топливах при температурах до 150° С, но (При более вышк их температурах (180° С) не влияет па образование осадков и степень забивки ими фильтров [3]. [c.45]

    Мазут прямогонный в смеси с дизельным топливом достаточно стабилен после двухнедельного хранения при 60°С он не расслаивается. Крекинг-остаток — менее стабильный компонент— при хранении в смеси с дизельным топливом частично переходит в нижний слой, о чем свидетельствует увеличение плотности, вязкости, содержания асфальтенов, карбенов и карбоидов, механических примесей в нижнем слое топлива. Отсюда можно заключить, что наличие крекинг-остатка обусловливает склонность топлива к образованию осадков. Депрессор-ная присадка, хорошо растворяющаяся в остаточном топливе, при хранении не выпадает из него — температура застывания верх1него и нижнего слоя оиинакова. [c.156]

    Каплю исследуемого раствора или небольшое количество твердого ве1цества содержащего акридин смешивали в углублении ка- пельной пластинки или микропробирке с каплей 0,01—0,03-мо-лярного раствора четыреххлористого олова в органическом растворителе. Реакция протекает практически мгновенно без нагревания с образованием осадка или раствора лимонно-желтого цвета. Открываемая минимальная концентрация акридина 0,1 мкг. Данную реакцию можно исиользовать в широком интервале температур (—20- +200°С). [c.122]

    Хорошие противоизносные свойства реактивных топлив обусловливаются, прежде всего, наличием в них гетероатомных соединений, часть которых, особенно соединения кислотного характера, обладает поверхностно-активными свойствами. С этой точки зрения нежелательно удаление из топлива гетероатомных соединений. Однако последние при повышенных температурах (>100 °С) легко окисляются с образованием осадков, т.е. являются основной причиной низкой термоокислительной стабильности реактивных топлив, получаемых прямой перегонкой нефта. Для ее улучшения, а часто и для обессеривания прямогонные топлива подвергают гидроочистюг. В результате ухудшаются их противоизносные свойства и химическая стабильность (табл. 1.15). [c.58]


Смотреть страницы где упоминается термин Температура образование осадка: [c.93]    [c.93]    [c.238]    [c.238]    [c.123]    [c.93]    [c.296]    [c.506]    [c.19]    [c.110]    [c.143]    [c.157]   
Кристаллизация в химической промышленности (1979) -- [ c.109 , c.110 ]




ПОИСК







© 2025 chem21.info Реклама на сайте