Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Потенциальные кривые взаимодействия в теории ДЛФ

    В работе [6] на примере коагуляции монодисперсных золей золота и иодида серебра была предпринята попытка строгой проверки теории ДЛФО путем сопоставления концентраций электролита, при которых наступает быстрая коагуляция и которым соответствует исчезновение энергетического барьера на потенциальных кривых взаимодействия частиц, вычисленных с помощью данной теории. [c.20]


    Теоретической интерпретации лучше всего поддается флокуляция в условиях равновесия адсорбции ВМС. Этот случай реализуется при введении флокулянта в дисперсию по методу двойной добавки, так как здесь к половине объема исходного золя добавляется коллоидный раСтвор, частицы которого содержат равновесные слои адсорбированного полимера. Зависимость степени флокуляции золя, осуществленной по этому методу, от содержания электролитов в системе может быть объяснена на основе анализа потенциальных кривых взаимодействия частиц, вычисленных по формулам теории ДЛФО и найденных независимым методом толщин адсорбционных полимерных слоев [6, 127, 138]. При расчетах электрических сил отталкивания между частицами Au и Agi принимали, что адсорбированный полимер не влияет на распределение зарядов в ДЭС, поэтому покрытых и непокрытых частиц можно уподобить таковым для незащищенных частиц. Расчеты показали [6, 131], что условием флокуляции неионным полимером при равновесной адсорбции ВМС является не исчезновение потенциального барьера между частицами, а его смещение к поверхности на расстояние, заведомо меньшее Д, т. е. когда этот барьер спрятан внутри полимерной оболочки. С помощью этих представлений удалось объяснить закономерности флокуляции золей Au и Agi добавками поливинилового спирта и полиэтиленоксида [6, 130]. [c.144]

    Важную информацию о возможном механизме флокуляции дисперсий в результате адсорбции катионных ПЭ дало рассмотрение потенциальных кривых взаимодействия частиц, вычисленных по теории ДЛФО [6, 128, 130]. В качестве приближения принимали, что адсорбированные макроионы не изменяют значение I/, , которое рассчитывали по формуле (1.10). [c.147]

    Физическая теория устойчивости и коагуляции электролитами. Проанализируем, как изменяется энергия взаимодействия в зависимости от расстояния между двумя частицами. Построим графики, характеризующие отдельно энергию притяжения и энергию отталкивания как функции расстояния. Общую энергию взаимодействия можно получить сложением ординат. На рис. 44 показаны такие графики, часто называемые потенциальными кривыми. При их построении придержи- [c.110]

    Теория, развитая Б. В. Дерягиным, позволяет вычислить, при каком достаточно низком значении фо-потенциала должен исчезнуть энергетический барьер, т. е. когда результирующая потенциальная кривая (рис. IX, 10), характеризующая зависимость энергии взаимодействия частиц от расстояния между ними, должна только в одной точке коснуться оси абсцисс (пунктирная кривая). При достаточно малом фо-потенциале связь между кри- [c.290]

    Выше (см. гл. V) показано, что при взаимодействии разнородных тел в жидкой дисперсионной среде константа молекулярного взаимодействия А может быть как положительной (притяжение), так и отрицательной (отталкивание). Рассмотрим, следуя [18], какие выводы позволяет сделать теория, основанная на анализе потенциальных кривых, при. 4 >0 и < 0. [c.146]


    Количественное описание взаимодействия дисперсных частиц принципиально возможно па основе современного учения о поверхностных силах и сводится к определению потенциальной энергии частиц или, иначе, к установлению баланса действующих между ними сил. Эта задача на основе общей концепции расклинивающего давления тонких жидких слоев была сформулирована в 1937 г. Б. В. Дерягиным. Им был разработан метод расчета свободной энергии и сил, действующих между двумя заряженными поверхностями в растворах сильного электролита, и показано, что при определенных условиях возможно появление на кривой потенциальной энергии взаимодействия второй энергетической ямы на относительно далеком расстоянии от поверхности [1]. При учете молекулярных сил притяжения Ван-дер-Ваальса— Лондона и ионно-электростатических сил отталкивания установлены общие закономерности взаимодействия в низкоконцентрированных растворах электролитов двух пластин и с некоторыми ограничениями двух одинаковых шаров, и на этой основе разработана теория устойчивости и коагуляции коллоидов [1—6]. Последняя была распространена на взаимодействие трех плоских частиц [c.130]

    Уместно вспомнить об одном обстоятельстве из истории развития теории химической связи и межмолекулярного взаимодействия. После первых расчетов энергии связи в молекулах с разными атомами (металл — металлоид) стало ясно, что эта величина мало чувствительна к принятой модели. Расчеты гетерополярных молекул с учетом или без учета поляризации, по модели твердых шаров или по любой модели, учитывающей отталкивание, почти всегда приводили к близким к эксперименту значениям энергии связи. Попытки вычислить энергию, например, водородной связи, основанные на разных моделях как электростатических, так и ковалентных, почти всегда давали вполне удовлетворительный результат. То же относится и к расчетам теплот адсорбции. Правильный порядок величины обеспечивается тем, что из эксперимента берутся две или три константы, а правильный характер всей потенциальной кривой постулирован заранее. Сама по себе полуэмпирическая потенциальная кривая, будь то кривая Леннард-Джонса или кривая, в которой коэффициент при берется по Лондону или каким-либо иным теоретическим способом, ничего не может сказать о природе сил адсорбции, так же как и кривая Морзе для двухатомной молекулы ничего не говорит о природе связи атомов в ней. [c.83]

    С теоретической точки зрения важно изучать проявления неаддитивности сил взаимодействия молекул с адсорбентом. Это направление в теории молекулярных сил в настоящее время является ведущим. Уже получен ряд важных результатов. Наиболее существенные из них относятся к близко-действию , т. 0. к потенциальной кривой в области равновесного расстояния, Показано, в частности, что вклад в энергию тройных и четверных взаимодействий может составлять до 35% и более от энергии парных взаи- [c.83]

    Концентрационная коагуляция, наблюдаемая у золей с сильно заряженными частицами, согласно теории ДЛФО, происходит вследствие электростатического эффекта сжатия двойного электрического слоя в результате увеличения концентрации индифферентного электролита в системе — толщина ионных атмосфер уменьшается. При этом наблюдается увеличение глубины вторичного потенциального минимума, что обусловливает возрастание вероятности дальней агрегации, а также изменяется форма потенциальных кривых парного взаимодействия частиц (рис. 7.2, в). На основании теоретических р с-четов Б. В. Дерягин и Л. Д. Ландау установили, что энергетический барьер исчезает на диаграмме энергия — расстояние между частицами золя , когда [c.612]

    Рассмотрим теперь теорию межмолекулярного взаимодействия, которая позволяет получить кривую потенциальной энергии взаимодействия при всех расстояниях в рамках единых представлений, не накладывая никаких ограничений на расстояния между частицами, на перекрывание их волновых функций и т. д. Заметим, что в силу своего общего характера эта теория применима также и для изучения взаимодействий между различными локализованными и непосредственно несвязанными друг с другом группами электропов внутри одной и той же молекулы. [c.233]

    Расчет потенциальной кривой молекулы представляет как раз одну из основных задач теории химической связи. Эмпирическая формула для расчета была предложена Морсом и носит его имя. Проблема химической связи с точки зрения квантовой механики сводится к вопросу, какую же волновую функцию следует применить в каждом конкретном случае и какой физической картине отвечает новое распределение электронной плотности в данной молекуле. Современная теория химической связи, базирующаяся на квантовой механике, исходит из того, что никаких особых сил химического взаимодействия, кроме электрических, не существует. Гравитационные и магнитные силы, действующие между электронами и ядрами, гораздо меньше электрических и их можно не учитывать. Электронные взаимодействия, хотя и носят электростатический характер, представляют собой (вследствие волновых свойств электронов) взаимодействие не точечных зарядов, а электронных облаков. Это обстоятельство является решающим и именно оно создает трудности для расчета энергии молекул по уравнению Шредингера. Требуется отыскать решение этого уравнения уже не для отдельного атома, а для всей молекулы в целом (вводя в него параметры, характеризующие данную молекулу). Строго решить уравнение Шредингера не удалось пока ни для одной молекулы. [c.71]


    По теории ДЛФО при концентрации электролита, равной порогу быстрой коагуляции, потенциальная кривая дисперсной системы находится в области отрицательных значений координат, только ее максимум, отвечающий нулевому потенциальному барьеру, лежит на оси абсцисс (см. рис. T.17, пунктирная кривая 4). Точке касания потенциальной кривой оси абсцисс соответствуют два условия равенства нулю суммарной энергии взаимодействия частии и ее производной по расстоянию между частицами  [c.385]

    Какие составляющие расклинивающего давления рассматривает теория устойчивости ДЛФО Приведите примеры потенциальных кривых взаимодействия между частицами для дисиерсных систем с различной степенью устойчивости. Каковы особенности коагуляции частиц в первом и вторичном энергетических минимумах в соответствии с теорией ДЛФО  [c.179]

    Тип и свойства структур, образующихся в коллоидных системах, зависят от характера сил взаимодействия между частицами. Согласно теории етруктурообразования все структуры в коллоидных системах разделяются на два типа коагуляционные и конденсационно-кристал-лизационные. В основу этой классификации положена потенциальная кривая взаимодействия частиц, вытекающая из теории ДЛФО (см. рис. 46). [c.187]

    В то же время эта теория, непрерывно развиваясь, и сейчас еще не достигла стадии завершения. Имеются факторы и явления, рассмотрение которых необходимо включить в рамки теории и в ее физико-химические основы. К ним в первую очередь относится теоретический расчет адсорбции ионов и ее влияние на строение двойного слоя, прежде всего на поверхностный потенциал. В последнее время этим вопросом занимались Мартынов и Муллер [4], предложившие новые методы его рассмотрения. Наряду с количественными подтверждениями следствий теории как на модельных опытах, так и на коллоидных растворах и суспензиях (например, закона 2 действия противоионов, выведенного Дерягиным и Ландау в 1941 г., изменения устойчивости золей вблизи потенциала нулевого заряда, связь коагулирующей концентрации с постоянной межмолекулярного взаимодействия Гамакера) были обнаружены и несоответствия ей. Наиболее важное из них обнаружилось при измерении скорости медленной коагуляции [5]. Мартынов и Муллер наметили пути предоления этой трудности. В их работе показано, что при достаточно высоких зарядах поверхности и низкой валентности противоионов коагуляция может пойти за счет вторичного минимума на потенциальной кривой взаимодействия, в резз льтате чего изменяются теоретические закономерности коагуляции. [c.31]

    Действительно, теория вандерваальсовых сил в ее обычном релей-шредингеровском варианте предполагает отсутствие перекрывания орбиталей как для основных состояний атомов, так и любых возбужденных состояний. Именно при этих предположениях вычисляется аттрактивная ветвь потенциальной кривой взаимодействия. В то же время расчет ре-пульсивной ветви как раз наоборот исходит из предположения о перекрытии волновых функций взаимодействующих частиц. Таким образом, как справедливо отмечается в [1], вычисление равновесного значения потенциальной энергии Wp основано па нахождении минимума кривой, построенной с использованием взаимно исключающих друг друга допущений. [c.93]

    В основу современной физической теории устойчивости и коагуляции ионностабилизированных коллоидных систем положены представления о молекулярных силах притяжения и электростатических силах отталкивания между частицами золя, являющимися основными слагающими (молекулярная и электростатическая компоненты) расклинивающего давления жидкой пленки. Как видно из рис. 7.2, а, на результирующей потенциальной кривой взаимодействия частиц при больших расстояниях между ними наблюдается неглубокий минимум (дальняя потенциальная яма), свидетельствующий о превалировании сил молекулярного притяжения. Это объясняется тем, что силы молекулярного притяжения убывают по степенному закону, а силы электростатического отталкивания — по экспоненциальному. На средних расстояниях (около 100 нм), отвечающих размеру эффективных ионных оболочек частиц, преобладают силы электростатического отталкивания, чему соответствует энерге- [c.610]

    Расчеты потенциальной энергии взаимодействия по уравнениям физической теории устойчивости показали, что энергетический максимум на потенциальных кривых изменяется от 2,2 ед. кТ (Г = 6 мВ) до 25,8 ед. кТ ( =14мВ). [c.31]

    В дальнейшем различными авторами были предприняты попытки уточнить эту Теорию и устранить некоторые ее противоречия. Так, из-за большого различия в энергиях связи протона со ртутью ( 29 ккал1г-атом) и с молекулой воды в ионе Н3О+ ( 280 ккал1г-ион) углы б и у в точке пересечения потенциальных кривых на рис. 150, б должны быть разными, а величины а — значительно превышающими 0,5. О. А. Есин предложил учитывать энергию отталкивания между адсорбированным атомом водорода и молекулами воды. Учет этого взаимодействия должен был увеличить наклон восходящей ветви на потенциальной кривой Над (см. рис. 150). При учете туннельного разряда водорода теория Гориути — Поляни дает возможность истолковать различную скорость выделения протия, дейтерия и трития за счет их различной способности просачиваться через потенциальный барьер. Наконец, в работах Дж. Бокриса квантовомеханические представления были использованы для расчета трансмиссионного коэффициента х. [c.296]

    Каковы основные положения теории устойчивости и коагуляции коллоидных систем по Дерягину—Ландау Сравните потенциальные кривые (в координатах энергия взаимодействия — расстояние для устойчивой коллоидной системы и системы астабилизованной. [c.440]

    Эти уравнения приводят почти к одинаковым результатам (рис. 6.3). Экспериментальные кривые (р Я) несколько отличаются от теоретической кривой Леннарда — Джонса числовым значением функции ф 7 ) на равновесном расстоянин. Расхождение в глубине минимума происходит, очевидно, из-за неточности приведенных уравнений для конденсированного состояния вещества. Однако качественная картина зависимости потенциальной энергии взаимодействия атомов от расстояния между ними вполне удовлетворительна. Лучшее согласование теории с экспериментом может быть достигнуто, если наряду с парными учитывать многочастичные взаимодействия, роль которых возрастает с увеличением плотности жидкости. [c.158]

    В рассмотренных выше теориях не учитывают существования сольватного слоя жидкости с измененными свойствами на поверхности частиц. Между тем, вряд ли можно представить себе систему с полным отсутствием взаимодействия между веществами дисперсной фазы и дисперсионной среды, даже в случае типично гидрофобных коллоидов (например, золей металлов). Ориентация молекул в сольватных слоях приводит к свойствам, характерным для квазитвердых тел — высокой вязкости, упругости, сопротивлению сдвигу — и препятствующим взаимопроникновению слоев при сближении частиц. Наряду с кинетическими факторами (резкое уменьшение скорости вследствие высокой вязкости), следует учитывать и термодинамические необходимость затраты работы на преодоление упругих сил или на частичную десорбцию молекул сольватной оболочки при утончении зазора между частицами. Затрата работы приводит к увеличению потенциальной энергии, к подъему нисходящей ветви кривой II(Н) в области малых И. Влияние сольватных слоев должно резко искажать потенциальные кривые при к с1 где ё — расстояние от поверхности до границы скольжения жидкости. [c.259]

    Теория ДЛФО ограничивается рассмотрением потенциальных кривых для двух дисперсных частиц. Это объясняется тем, что коагуляция, протекающая в разбавленных золях, определяется парным взаимодействием частиц, положенным, как мы видели, в основу теорий кинетики коагуляции Смолуховского и Н. А. Фукса. Однако для определения условий устойчивости концентрированных золей необходимо учитывать коллективные взаимодействия частиц. Такие золи не только обладают практически достаточной стабильностью, но часто обнаруживают и периодическое расположение частиц аналогично узлам кристаллической решетки. Подобные периодические коллоидные структуры образуют, например, некоторые вирусы и монодисперсные латексы. Условием периодичности, конечно, является прежде всего достаточная монодисперсность системы. Как отметили еще Бернал и Фанкухен, периодическое расположение свидетельствует о дальнодействующих силах между коллоидными частицами. [c.295]

    Потенциальная кривая зависимости и цд от где г - расстояние между парой валентно-несвязанных атомов, следует из анализа отклонений свойств реального и идеального газов. Исследования Т. Хилла [81], М. Кривого и Е. Мейзона [82] рассеяния молекулярных пучков позволили установить зависимость /вдв(г)для взаимодействий атомов инертных газов, которые были распространены на атомы соответствующих галоидов. Кривая С/ д как функция расстояния между атомами гелия представлена на рис. 1.2. На больших расстояниях действуют силы притяжения, энергия которых пропорциональна, согласно теории Лондона, 1/г . На более коротких расстояниях при достаточном сближении атомов их ван-дер-ваальсовы радиусы перекрываются, и отталкивание между ядрами и между электронами доминируют над силами притяжения. Энергия отталкивания обычно аппроксимируется как 1/г или ехр(-/). Таким образом, для описания невалентных взаимодействий наиболее широко используются две аналитические формы потенциала потенциал Дж. Леннарда-Джонса ("6-12") С/вд (г) = (-Л/г ) + (В/г 2) и потенциал А. Букингема ("6-ехр") С/вдв( ) = = (Л/г ) + В ехр(-Сг), где Л, 5 и С - эмпирические параметры. Потенциальные кривые Леннарда-Джонса и Букингема очень похожи различие заключается лишь в том, что потенциал "6-ехр" имеет ложный минимум при г < 1,0 А и при / = О величина С/ дв стремится к [c.114]

    В рамках теории устойчивости коллоидов (теории ДЛФО) радиус захвата — это расстояние между центрами частиц К, которому отвечает максимум на потенциальной кривой их взаимодействия. При этом чаще всего величина зазора между поверхностями частиц много меньше радиуса частиц а, поэтому с хорошей точностью можно считать, что Я = 2а. Коэффициент диффузии 0 = кТ 6т1т1а также определяется радиусом частиц, поэтому частота столкновений д оказывается не зависящей от их размера  [c.696]

    Энергия взаимодействия соседних атомов полимерной цепи представлена на рис. 2.2 (кривая /). Для органических полимеров потенциальная энергия взаимодействия задавалась в виде функции Морзе. Если к цепи приложена постоянная внешняя сила / = onst, то энергия взаимодействия соседних атомов описывается кривой с максимумом (кривая 2 на рис. 2.2). Таким образом, в теории Губанова и Чевычелова максимум появлялся только при наличии растягивающей силы. (На рис. 2.2. Го — межатомное расстояние, или длина химической связи Ат —уд- [c.24]

    Проведенные Чураевым расчеты зависимости энергии взаимодействия плоских поверхностей кварца от толщины водных прослоек в растворах электролитов различной концентрации с учетом Пс показывают, что при низких значениях потенциала поверхности или состояниях, бли 5ких к изоэлектрической точке, структурные силы могут обеспечить достаточно высокий барьер на потенциальных кривых энергии взаимодействия частиц. Таким образом, на основе развитой концепции структурных сил удается обосновать известный факт высокой устойчивости гидрофильных дисперсий кварца в воде, необъяснимой ранее в рамках классической теории ДЛФО. [c.24]

    Резюмируя, можно сказать, что наряду с расчетами изолированных комплексов важной теоретической задачей является анализ возможных механизмов влияния среды на параметры комплексов и вид потенциальной поверхности. Для истолкования имеющихся экспериментальных данных необходимо выяснить, как меняются эти параметры при переходе от газовой фазы к конденсированным инертным средам и, далее, к более активным растворителям. Ясно, что эта задача не может быть решена с помощью теорий типа теории Онзагера—Бетчера, оперирующей в основном макроскопическими величинами. Если потенциальная поверхность изолированной системы имеет только один минимум, то объяснить появление второго минимума при переходе в раствор в рамках подобной теории невозможно. Необходим учет всех видов взаимодействия на основе детального квантовомеханического рассмотрения. Первые шаги в этом направлении уже делаются. Так, в работе [9] проведен расчет по методу ППДП/2 взаимодействия комплекса НдК---НР с молекуламии воды, составляющими первую координационную сферу его гидратной оболочки. Расчет показал, что наличие такого взаимодействия может привести к появлению второго минимума на потенциальной кривой [c.242]

    Последовательная теория л1ежмолекулярных сил, правильно описывающая их новедепие как па близких, так и на далеких расстояниях, смогла быть построена только после создания квантовой механики, основные идеи которой были сформулированы в период 1925—1927 гг. (Гайзенберг, Шредингер, Бор, Борн, Дирак, Паули). Уже в 1927 г. Гайтлером и Лондоном [9] был проведен квантовомеханический расчет потенциальной кривой для простейшей системы — двух атомов водорода. Расчет Гайтлера — Лондона заложил основы квантовой теории валентности. Из полученных ими результатов следовало, что отталкивателыпдй характер потенциальной кривой иа близких расстояниях определяется антисимметричностью волновой функции относительно перестановок электронов, приводящей к появлению специфического обменного взаимодействия при этом силы отталкивания экспоненциально спадают с расстоянием. В этом же году Уонгом [10] было впервые рассмотрено квантовомеханическое притяжение, возникающее [c.18]

    Несмотря на то, что с экспериментальной точки зрения вопрос о внутреннем вращении в молекулах изучен довольна хорошо, теория тормозящего потенциала еще практически не разработана. В принципе строгий квантовомеханический расчет, основанный на учете электростатических взаимодействий между всеми электронами и ядрами молекулы, должен,, конечно, дать значения энергий всех конформаций молекулы и, следовательно, высот барьеров и разностей энергий между поворотными изомерами. Однако вычисление тормозящего потенциала предъявляет особенно высокие требования к точности рез гльтатов, полученных с помощью приближенных квантовомеханических методов. Энергия торможения значительно меньше суммарной энергии молекулы, так что высоты барьеров и разности энергий между поворотными изомерами представляют собой при таком методе расчета малые разности больших величин. Поэтому до сих пор не существует достаточно строгого квантовомеханического расчета потенциальной кривой даже для простейшего случая молекулы этана. [c.53]


Смотреть страницы где упоминается термин Потенциальные кривые взаимодействия в теории ДЛФ: [c.20]    [c.295]    [c.279]    [c.279]    [c.83]    [c.279]    [c.8]    [c.84]    [c.130]    [c.242]    [c.173]   
Коллоидная химия 1982 (1982) -- [ c.259 , c.298 ]




ПОИСК





Смотрите так же термины и статьи:

Потенциальная яма



© 2024 chem21.info Реклама на сайте