Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Технология получения соединений циркония

    Хлорирование в настоящее время широко используют в технологии редких металлов для перевода рудных концентратов и некоторых промежуточных продуктов технологии в хлориды, удобные для последующего разделения, очистки и получения металлов. Хлорирование является основным методом, используемым в технологии титана. Хлорируется значительная доля рудных концентратов циркония и гафния, тантала и ниобия, редкоземельных элементов и др. Фторирование применяют в-значительно меньшем масштабе, главным образом для получения фторидов редких металлов из окислов или вторичных металлов с целью их металлотермического или электрохимического восстановления. Хлорирование и фторирование широко используют при переработке комплексных руд и различного рода сложных композиций окислов или металлов, так как различие в температуре плавления и температуре кипения хлоридов и фторидов редких металлов позволяет успешно разделять их и осуществлять их тонкую очистку. На основе процессов хлорирования и фторирования созданы короткие, изящные технологические схемы. Благодаря высокой реакционной способности хлора и фтора процессы хлорирования и фторирования практически осуществляются нацело, и степень перевода исходных материалов в хлориды и фториды колеблется между 98 и 100%. Их огромным преимуществом перед другими методами вскрытия и переработки рудных концентратов и других соединений редких металлов является отсутствие сточных вод и сброса в атмосферу. Создание технологических схем без водных и атмосферных сбросов является эффективной мерой по охране природы. [c.65]


    В настоящее время экстракцию широко используют для концентрирования одного или нескольких компонентов, разделения близких по свойствам веществ и очистки вещества. Ее применяют в процессах переработки нефти для разделения ароматических и алифатических углеводородов, в химической технологии, в том числе для разделения изомеров, обезвоживания уксусной кислоты, при получении различных лекарственных препаратов, например антибиотиков, и др. Особенно успешно используется экстракция в гидрометаллургии в технологии урана, бериллия, меди, для разделения близких по свойствам металлов — редкоземельных элементов (циркония и гафния, тантала и ниобия), никеля и кобальта и т. д. Экстракционные методы применяют для опреснения воды, переработки промышленных сбросов с целью их обезвреживания, а также использования их полезных компонентов. Наконец, экстракция широко используется в аналитической химии и как метод физико-химического исследования. В настоящее время на основе химических и физико-химических представлений можно подобрать экстрагент для извлечения практически любого органического или неорганического соединения. [c.6]

    Фтор и его соединения приобретают все большее практическое значение. Соединения фтора уже давно применялись при электролитическом получении алюминия, электролитическом осаждении и рафинировании металлов, в производстве инсектицидов, при консервировании древесины, в производстве кислотоупорных замазок и т. д. В настоящее время фтор и его соединения нашли применение также при разделении ряда редких металлов (циркония и гафния, ниобия и тантала, актиноидов), в качестве флюсов при пайке специальных сталей, как рабочие вещества холодильных машин, как катализаторы многих процессов химической технологии, при изготовлении химически устойчивых жидкостей и пластических масс и т. д. [c.9]

    Технология получения соединений циркония [c.431]

    Технология металлического циркония имеет много общего с технологией титана. Аналогия наблюдается в выборе соединений, из которых получают цирконий, в выборе восстановителей и условий восстановления. Отличия в технологии получения металлического циркония обусловлены более высокой температурой его плавления, меньшей окисляемостью, а также различиями в свойствах исходных соединений. Способы получения металлического циркония делятся на три группы 1) металлотермия 2) электролиз 3) термическая диссоциация. [c.462]


    Изучение взаимодействия безводных тетрахлоридов циркония и гафния с хлоридами алюминия, железа и щелочных металлов и термической устойчивости образующихся при этом соединений весьма важно для химии и технологии получения чистых соединений. [c.117]

    В книге изложены основы технологии важнейших редких и рассеянных элементов лития, рубидия, цезия, бериллия, галлия, индия, таллия, скандия, иттрия, лантана и лантаноидов, германия, титана, циркония, гафния, ванадия, ниобия, тантала, молибдена, вольфрама, рения. В отношении каждого элемента описаны важнейшие области применения, характеристика рудного сырья и его обогащение, получение соединений элементов из концентратов, отходов и полупродуктов производства, получение особо чистых как соединений, так и металлов. [c.4]

    Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов. Во второй части книги изложены основы химии и технологии скандия, иттрия, лантана, лантаноидов, германия, титана, циркония, гафния. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии. В описании технологии приведены важнейшие области применения элементов, исходное сырье и его обогащение, получение соединений элементов из концентратов и отходов производства, современные методы разделения и очистки элементов. [c.2]

    Хлор является весьма активным реагентом. При высоких температурах он способен вытеснять серу из сульфидов, а в присутствии восстановителей хлорировать окислы различных металлов и вытеснять из сульфатов, фосфатов, силикатов кислородные соединения серы, фосфора, кремния с образованием соответствующих хлоридов. Это используют в технологии благородных и цветных металлов при рафинировке золота, алюминия, свинца и получении вторичного олова а также в металлургии титана и редких металлов — циркония, тантала, ниобия и др. При хлорировании полиметаллических руд образующиеся хлориды могут быть разделены на основе различия в температурах испарения, а также методами экстракции.  [c.961]

    Для получения особо чистых веществ могут использоваться иоииты как органического, так и неорганического происхождения [8, 9]. В последнем случае область применения ионитов, виду их невысоких химической и механической стойкостей, ограничс[ и соединениями элементов, образующих данный ионит. Так. папример, ионит фосфатциркония рекомендуется применять для глубокой очистки только соединений циркония. Несколько особое положение занимают иониты на основе графита и активных углей. Окислениий графит, сульфированные, азотированные и окисленные активные угли, из которых предварительно удалены микропримеси, являются перспективными ионитами в технологии особо чистых веществ, [c.186]

    Получение. Соединения Г. выделяют из соединений Zr обычно после завершения технологич. цикла получения последнего. Вскрытие циркониевых рудных концентратов, содержащих Г., и получение соединений Zr являются предтехнологией гафния (см. Цирконий). Собственная технология Г. характеризуется в основном методами, применяемыми для разделения Zr и Hf, к-рые можно объединить в след, группы дробная кристаллизация дробное осаждение селективное термяч. разложение соединений сублимация, дистилляция и ректификация галогени-дов и их производных адсорбция я ионный обмен . экстракция. Все эти методы, базируются на использовании лишь небольших различий в. свойствах соединений Zr и Hf. [c.406]

    В технологии циркония метод хлорирования сначала применяли для получения 1гС и НГС14 из двуокисей после разделения циркония и гафния с целью дальнейшей переработки их на металлы. В настоящее время хлорирование все шире находит применение как способ разложедия концентратов при получении различных соединений циркония. [c.442]

    В Советском Союзе в послевоенные годы выполнены большие геологические поисковые работы, исследования по геохимии месторождений цирконово-гафние-вых руд и разработаны способы получения концентратов циркона. Усилиями химиков и технологов в сжатые сроки была разработана технология концентрирования, разделения и получения в чистом виде металлического гафния, его двуокиси,, фторидных, азотнокислых, сернокислых, хлоридных и других соединений и уже в 1952—1953 гг. было налажено промышленное производство двуокиси циркония и металла, очищенного от гафния, и получены первые опытные партии двуокиси гафния и циркония (Укргиредмет, Гиредмет). Металлический гафний и его соединения стали вполне доступными для современной техники и лабораторной практики препаратами.  [c.3]

    Исследования процессов испарения окислов, прогрессивно развивающиеся за последнее десятилетие, позволили накопить большой фактический материал о составе пара и термодитшми-ческих характеристиках реакций испарения. Наиболее ценная информация была получена с применением масс-спектрометрической методики анализа состава паров окислов, позволяющей измерять парциальные давления компонентов пара в большом диапазоне концентраций. Естественно, что вначале внимание исследователей было привлечено к изучению процессов испарения индивидуальных окислов, устойчивых при обычных условиях. Впоследствии были изучены и такие системы, в которых обнаруживались газообразные окислы, в конденсированной фазе не наблюдавшиеся (например, окись лантана ЕаО, окислы платины, палладия). Одним из принципиально важных результатов было доказательство широкого распространения полимеризации в парах окислов. Эксперименты проводились в широком интервале температур, от 100—150° К, как это требовалось при исследовании образования субокислов серы, углерода, кислородных соединений фтора, и до 3000—3100° К, когда испаряли наиболее труднолетучие окислы иттрия, циркония, гафния, тория. Опубликованы достаточно исчерпывающие обзоры литературы по этим проблемам [1, 2, 4]. В настоящее время начинают исследоваться системы, содержащие в газовой фазе вещества, молекулы которых состоят из 3 видов атомов. Соединения такого рода относятся к различным классам и обладают сильно различающейся летучестью. В качестве примеров можно привести карбонилы тяжелых металлов, сложные галоидные соединения, оксигалогениды, оксисульфиды, газообразные гидроокиси. Обнаружено также, что соединения типа солей кислородных кислот (или соединения типа двойных окислов аАОж-ЬВОу) во многих случаях также оказываются устойчивыми в паровой фазе даже при очень высоких температурах. Систематическое изучение этих объектов существенно для разработки технологии получения окисных пленок, для синтеза монокристаллов из газовой фазы, для понимания химических процессов в оксидных катодах. Результаты термодинамического исследования процессов испарения сложных окислов имеют важное значение для понимания поведения при высоких температурах комбинированной конструкционной окисной керамики и стекол, шлаков и включений в металлах. Число этих примеров при желании можно увеличить. [c.16]


    Технология кварцевой керамики не ставит ограничения на ввод в ее состав соединений алюминия и циркония. Поэтому при получении кварцевой керамики в качестве связок целесообразно применять растворы гидроксохроматов и гидроксохлоридов алюминия и циркония. [c.139]


Смотреть страницы где упоминается термин Технология получения соединений циркония: [c.30]    [c.99]    [c.4]    [c.13]    [c.236]    [c.126]   
Смотреть главы в:

Химия редких и рассеянных элементов -> Технология получения соединений циркония




ПОИСК





Смотрите так же термины и статьи:

НК Технология получения соединений РЗЭ

Получение пз соединений



© 2024 chem21.info Реклама на сайте