Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Технология циркония и гафния

    Приведенный словарь дескрипторов составлен в широком плане химии и химической технологии циркония, гафния и их соединений. Естественно, что у исследователей могут возникнуть другие, свои вопросы, которые нужно будет отразить в словаре дескрипторов. При этом некоторые из тематических рубрик могут быть заменены другими, или же вся рубрика превратится в признак какой-то более общей рубрики. [c.11]


    ТЕХНОЛОГИЯ ЦИРКОНИЯ и ГАФНИЯ [c.306]

    В настоящее время хлорная металлургия применяется для производства титаиа, ниобия, тантала, циркония, гафния, редкоземельных элементов, германия, кремния, олова и даже алюминия. Она является эффективной при переработке не только многокомпонентных руд, но и промышленных отходов, содержащих ценные элементы, металлолома, отработанных тепловыделяющих элементов ядерных реакторов и т. п. Она нашла широкое применение в металлургии редких металлов. Преимуществами хлорной металлургии по сравнению с традиционными способами извлечения металлов из руд являются полнота вскрытия сырья (полнота извлечения из него ценных элементов), а также высокая избирательность. Метод требует совершенной технологии и высокой культуры производства, поскольку хлор и его летучие соединения очень токсичны и химически агрессивны. [c.171]

    Излагается технология редких металлов, нашедших широкое применение в атомной технике циркония, гафния, литня, бериллия, редкоземельных элементов, ниобия, тантала и ванадия. [c.2]

    В настоящее время редкие металлы получили применение в самых разнообразных областях науки и техники, причем области применения их из года в год расширяются. Это прежде всего объясняется особыми физическими и химическими свойствами редких металлов, так, например, германий является ценнейшим материалом дЛ1 изготовления полупроводниковых приборов, широко применяемых в различных областях радиотехники и электронике. Для этих же целей применяются индий, теллур, селен и другие. Введение редких металлов в стали и в сплавы цветных металлов обеспечило получение материалов, стойких против коррозии, жаропрочных, обладающих большой механической прочностью и другими ценными свойствами. В химической технологии и металлургии принято разделять редкие металлы на следующие технические подгруппы а) легкие литий, рубидий, цезий, бериллий и др б) тугоплавкие титан, цирконий, гафний, ванадий, ниобий, тантал, молибден, вольфрам, рений в) рассеянные галлий, индий, таллий, германий г) редкоземельные скандий, иттрий, лантан и лантаноиды радиоактивные полоний, радий, актиний и актиноиды. [c.419]

    Полной аналогии в свойствах продуктов плазменно-фторидной и экстракционно-фторидной технологий производства циркония нет, поскольку в экстракционно-фторидной технологии цирконий и гафний разделяют на гидрохимической стадии с помощью экстракции. В случае использования плазменно-фторидной технологии переработки циркона при сублимационной очистке циркония от примесей, указанных в табл. 3.4, гафний в основном следует за цирконием. [c.143]


    ЧАСТОТНАЯ ТЕХНОЛОГИЯ ПРОИЗВОДСТВА ЯДЕРНО-ЧИСТОГО ЦИРКОНИЯ, ГАФНИЯ, СКАНДИЯ И ДРУГИХ РЕДКИХ И РЕДКОЗЕМЕЛЬНЫХ МЕТАЛЛОВ [c.686]

    Во вторую часть включено описание химии и технологии скандия, иттрия, лантана и лантаноидов, германия, титана, циркония, гафния и их соединений. Содержание книги отражает все наиболее существенные сведения об указанных элементах, опубликованные за многие годы как в отечественной, так и в зарубежной периодической печати и в монографиях. Учтены также научно-исследовательские изыскания авторов настоящего пособия. [c.312]

    В книге изложены основы технологии важнейших редких и рассеянных элементов лития, рубидия, цезия, бериллия, галлия, индия, таллия, скандия, иттрия, лантана и лантаноидов, германия, титана, циркония, гафния, ванадия, ниобия, тантала, молибдена, вольфрама, рения. В отношении каждого элемента описаны важнейшие области применения, характеристика рудного сырья и его обогащение, получение соединений элементов из концентратов, отходов и полупродуктов производства, получение особо чистых как соединений, так и металлов. [c.4]

    Книга представляет собой учебное пособие по специальным курсам для студентов химико-технологических вузов. Во второй части книги изложены основы химии и технологии скандия, иттрия, лантана, лантаноидов, германия, титана, циркония, гафния. Наибольшее внимание уделено свойствам соединений элементов, имеющих значение в технологии. В описании технологии приведены важнейшие области применения элементов, исходное сырье и его обогащение, получение соединений элементов из концентратов и отходов производства, современные методы разделения и очистки элементов. [c.2]

    В книге изложены основы химии важнейших редких и рассеянных элементов лития, рубидия, цезия, бериллия, галлия, индия, таллия, скандия, иттрия, лантаноидов, германия, титана, циркония, гафния, ванадия, ниобия, тантала, молибдена, вольфрама, рения. Наиболее подробно описаны синтез и свойства соединений элементов с кислородом и галогенами, а также солей, имеющих большое значение в технологии. [c.4]

    Технология получения изделий из большинства тугоплавких металлов (титана, циркония, гафния, ниобия, тантала, молибдена, вольфрама, рения) включает в себя получение порошков и их последующую обработку, которая осуществляется в основном по следующим трем вариантам  [c.454]

    Металлургия. Создание атомной промышленности потребовало разработки многих металлургических процессов, включающих на некоторых стадиях применение инертных сред (аргона или гелия) высокой чистоты [31]. Речь идет о получении урана, плутония, тория, бериллия, циркония, гафния, ниобия, лития, щелочноземельных и щелочных металлов, тантала, титана. Велика роль инертных газов в порошковой металлургии, в технологии полупроводниковых материалов — германия, кремния [32], а также при получении некоторых специальных сортов нержавеющей стали. [c.17]

    Как видно из приведенных данных, в ряду Ti—Zr—Hf несколько увеличиваются первые энергии ионизации. При переходе от Ti к Zr возрастают атомные и ионные радиусы, а цирконий и гафний из-за лантаноидного сжатия имеют почти одинаковые размеры атомов и ионов. Поэтому свойства Zr и Hf очень близки и их разделение — одна из сложнейших проблем неорганической технологии. [c.528]

    Как можно объяснить, что соединения циркония и гафния очень близки по свойствам и поэтому разделение этих элементов -- одна из сложных проблем химической технологии  [c.40]

    Радиусы атомов циркония и гафния, а также радиусы их ионов (Э " ) из-за лантаноидного сжатия имеют почти одинаковые размеры. Поэтому свойства циркония и гафния очень близки. Разделение Zr и Hf — одна из сложнейших проблем химической технологии. [c.283]

    Материал в пособии изложен последовательно согласно расположению элементов в группах периодической системы Д. И. Менделеева. Большой объем материала вызвал необходимость расчленить книгу на три части, которые выходят в свет одновременно. В I части излагается химия и технология лития, рубидия и цезия, бериллия, галлия, индия и таллия, во П части — скандия, иттрия, лантана и лантаноидов, германия, титана, циркония и гафния, в П1 части — ванадия, ниобия, тантала, селена, теллура, молибдена, вольфрама, рения. [c.3]

    Получение металлических циркония и гафния. Технология получения металлического Zr и Н1 имеет много общего с технологией Ti. [c.345]

    Селективность (избирательность), высокая производительность и возможность осуществления экстракционного процесса в непрерывном варианте и в крупных масштабах обусловливают применение этого метода для очистки топлива, масел в нефтяной и коксохимической промышленности, в технологии органических производств, в качестве метода разделения близких по свойствам элементов в гидрометаллургии (редкоземельных элементов — семейства лантаноидов, иттрия и скандия циркония и гафния ниобия и тантала металлов для ядерной энергетики). [c.81]


    Технология процесса наращивания такая же, какая применяется для 1. деления металлических титана, циркония и гафния из газовой фазы ( [c.1472]

    Описанная технология приготовления шихты универсальна при синтезе гранатов для ювелирных и технических целей, легированных оксидами с низкой упругостью пара, например, оксидами редких земель и элементов П1 и IV групп Периодической системы элементов Д. И. Менделеева (скандий, гафний, цирконий). Приготовление шихты с легколетучими легирующими добавками, например с оксидами ванадия, имеет некоторые технологические особенности, о которых пойдет речь в соответствующих разделах. [c.178]

    Хлорирование в настоящее время широко используют в технологии редких металлов для перевода рудных концентратов и некоторых промежуточных продуктов технологии в хлориды, удобные для последующего разделения, очистки и получения металлов. Хлорирование является основным методом, используемым в технологии титана. Хлорируется значительная доля рудных концентратов циркония и гафния, тантала и ниобия, редкоземельных элементов и др. Фторирование применяют в-значительно меньшем масштабе, главным образом для получения фторидов редких металлов из окислов или вторичных металлов с целью их металлотермического или электрохимического восстановления. Хлорирование и фторирование широко используют при переработке комплексных руд и различного рода сложных композиций окислов или металлов, так как различие в температуре плавления и температуре кипения хлоридов и фторидов редких металлов позволяет успешно разделять их и осуществлять их тонкую очистку. На основе процессов хлорирования и фторирования созданы короткие, изящные технологические схемы. Благодаря высокой реакционной способности хлора и фтора процессы хлорирования и фторирования практически осуществляются нацело, и степень перевода исходных материалов в хлориды и фториды колеблется между 98 и 100%. Их огромным преимуществом перед другими методами вскрытия и переработки рудных концентратов и других соединений редких металлов является отсутствие сточных вод и сброса в атмосферу. Создание технологических схем без водных и атмосферных сбросов является эффективной мерой по охране природы. [c.65]

    Предлагаемая читателю книга д-ра хим. наук проф. Г. А. Ягодина, канд. хим. наук О. А. Синегрибовой и А. М. Чекмарева посвящена химической технологии именно тех редких металлов, которые используют в атомной технике, и написана на основе специального курса лекций, читаемого авторами на инженерном физико-химическом факультете Московского ордена Ленина и ордена Трудового Красного Знамени химико-технологического института им. Д. И. Менделеева. Таким образом, круг рассматриваемых редких металлов ограничен такими металлами, как литий, бериллий, редкоземельные элементы, цирконий, гафний, ниобий, тантал, молибден, вольфрам и титан. Ввиду того, что химия и технология редких металлов, относящихся к естественным или искусственным радиоактивным элементам, читается в отдельных специальных курсах, эти разделы в данном учебном пособии не излагаются. [c.3]

    Для карботермического восстановления урана из оксидного сырья можно использовать технику и технологию холодного тигля , основанную на прямом частотном индукционном нагреве гиихты ИзОа + + хС, при котором используется ее собственная или индуцированная проводимость. Высокочастотная технология холодного тигля разработана в настоящее время применительно к синтезу бескислородной керамики (карбиды, нитриды и различные керамические композиции см. гл. 7), используется для плавления оксидных керамических материалов [14] низкочастотная технология применяется для крупномасштабного металлотермического производства циркония и гафния из фторидного сырья и рафинирования различных редкоземельных металлов и сплавов (см. гл. 14). В главах 7, 8 и 14 показаны схемы индукционных установок и металлургических печей для синтеза бескислородных керамических материалов, для плавки и рафинирования металлов в дискретном и непрерывно-последовательном режимах по технологии холодный тигель . Эта технология и разработанная техника могут быть, в принципе, использованы в крупномасштабной технологии карботермического восстановления урана из оксидного сырья, однако необходимо проведение НИОКР для решения технологических и аппаратурных проблем. В результате комплекса НИОКР, проведенных в 70-80-х годах, в настоящее время арсенал плазменного и частотного оборудования стал значительно богаче. Так, в 80-х годах появилось металлургическое оборудование типа холодный тигель , работающее на частоте несколько килогерц, применяемое для производства циркония, гафния, редких и редкоземельных металлов, включая скандий появились металлодиэлектрические реакторы, прозрачные к электромагнитному излучению в области радиочастот, используемые для высокотемпературных синтезов бескислородной керамики, для плавления оксидной керамики и даже для остекловывания радиоактивных отходов. Кроме того, проведены НИОКР по созданию комбинированного плазменно-частотного оборудования для решения химико-технологических и металлургических проблем, для некоторых металлургических приложений оборудование мегаваттной мощности уже создано и нашло практическое применение. Результаты этих НИОКР будут изложены в последующих главах очень вероятно, что такое оборудование будет использовано и для внедрения в промышленное производство технологии карботермического восстановления урана из оксидного сырья. [c.319]

    В технологии циркония метод хлорирования сначала применяли для получения 1гС и НГС14 из двуокисей после разделения циркония и гафния с целью дальнейшей переработки их на металлы. В настоящее время хлорирование все шире находит применение как способ разложедия концентратов при получении различных соединений циркония. [c.442]

    Исследования процессов испарения окислов, прогрессивно развивающиеся за последнее десятилетие, позволили накопить большой фактический материал о составе пара и термодитшми-ческих характеристиках реакций испарения. Наиболее ценная информация была получена с применением масс-спектрометрической методики анализа состава паров окислов, позволяющей измерять парциальные давления компонентов пара в большом диапазоне концентраций. Естественно, что вначале внимание исследователей было привлечено к изучению процессов испарения индивидуальных окислов, устойчивых при обычных условиях. Впоследствии были изучены и такие системы, в которых обнаруживались газообразные окислы, в конденсированной фазе не наблюдавшиеся (например, окись лантана ЕаО, окислы платины, палладия). Одним из принципиально важных результатов было доказательство широкого распространения полимеризации в парах окислов. Эксперименты проводились в широком интервале температур, от 100—150° К, как это требовалось при исследовании образования субокислов серы, углерода, кислородных соединений фтора, и до 3000—3100° К, когда испаряли наиболее труднолетучие окислы иттрия, циркония, гафния, тория. Опубликованы достаточно исчерпывающие обзоры литературы по этим проблемам [1, 2, 4]. В настоящее время начинают исследоваться системы, содержащие в газовой фазе вещества, молекулы которых состоят из 3 видов атомов. Соединения такого рода относятся к различным классам и обладают сильно различающейся летучестью. В качестве примеров можно привести карбонилы тяжелых металлов, сложные галоидные соединения, оксигалогениды, оксисульфиды, газообразные гидроокиси. Обнаружено также, что соединения типа солей кислородных кислот (или соединения типа двойных окислов аАОж-ЬВОу) во многих случаях также оказываются устойчивыми в паровой фазе даже при очень высоких температурах. Систематическое изучение этих объектов существенно для разработки технологии получения окисных пленок, для синтеза монокристаллов из газовой фазы, для понимания химических процессов в оксидных катодах. Результаты термодинамического исследования процессов испарения сложных окислов имеют важное значение для понимания поведения при высоких температурах комбинированной конструкционной окисной керамики и стекол, шлаков и включений в металлах. Число этих примеров при желании можно увеличить. [c.16]

    ИПС для целевой библиографии по вопросам химии и химической технологии ряда элементов разрабатывалась на конкретном примере циркония и гафния. Целевая перфокартотека по химии и технологии циркония и гафния состоит у нас более чем из 6 тысяч карточек. Эта перфокартотека прошла испытание временем, что позволяет поделиться накопленным опытом. [c.4]

    Редкими металлами в совр. технике условно называют нек-рые химич. элементы, в большинстве по своим свойствам металлы, области возможного исполт.-зования, природные ресурсы и технология произ-ва к-рых уже достаточно определены, но к-рые еще редко и в относительно малых количествах применяются в пром-сти, поскольку при достигнутом ранее уровне техники еще можно было обойтись без их широкого использования. Развитие применения и произ-ва РМ обусловлено возникновением потребности пром-сти в новых высокоэффективных материалах. К РМ относится ок. 30 химич. элементов литий, цезий, бериллий, стронций, иттрий, редкоземельные элементы, цирконий, гафний, ниобий, тантал, а также т. н. редкие рассеянные химич. элементы галлий, индий, таллий, германий, селен, теллур, рений. Группа РМ не остается неизменной из РМ выбывают химич. элементы, получившие широкое применение в пром-сти, каковы вольфрам, молибден, уран или титан, еще недавно относившиеся к РМ. Из группы современных РМ также могут в ближайшее время перейти в разряд обычных материалов техники цирконий, стронций, литий, церий, ниобий как наиболее подготовленные к широкому пром. использованию. Вместе с тем группа РМ пополняется не изученными ранее химич. элементами после установления их полезности для произ-ва и возможности использования при дальнейшем повышении уровня техники. К ним относятся, напр. рубидий, скандий, гольмий, тербий, эрбий, иттербий, диспрозий, лютеций, изученные пока еще недостаточно, но условно уже включаемые в состав РМ. Группа РМ пополргатся и такими хпмич. элементами, как технеций, прометий, трансурановые актиноиды, к-рые будут воспроизводиться искусственно и выделяться при регенерации отработанного ядерного топлива в установках для мирного использования атомной энергии в относительно значительных количествах, позволяющих организовать их регулярное применение в пром-сти. [c.417]

    Общие свойства соединений переходных металлов рассматриваются в соответствующих разделах неорганической химии [18], а также в монографии [1] опубликовано также значительное число обзоров, посвященных более частным проблемам. Среди этих проблем в настоящее время наибольшее внимание привлекает химия ферроцена [19, 20], а также химия и технология металлоценов [21, 22]. Значительное число работ посвящено химии органических соединений титана, циркония и гафния [23, 24], а также никеля [c.242]

    Экстракция получает широкое применение в технологии редких металлов для разделения близких по свойствам элементов [301. Так, для разделения рубидия и цезия наиболее перспективными из опробованных в настоящее время экстрагентов являются замещенные фенолы цирконий и гафний разделяют в промышленности экстракцией родапидов этих метал.лов метализобутилкетоном или нитратов трибутилфосфатом. С помощью этих экстрагентов можно разделить также ниобий и тантал из растворов смесей плавиковой и других минеральных кислот. Молибден и вольфрад разделяются при экстракции ацетофеноном. Редкоземельные элементы делят экстракцией грибутилфосфатом в присутствии высаливателей или из концентрированных растворов азотной кислоты. Хотя коэффициенты разделения соседних пар элементов малы, при наличии нескольких десятков ступеней экстракции возможно получить индивидуальные РЗЭ в чистом виде. Более высоким коэффициентом разделения при экстракции РЗЭ характеризуется ди-2-этилгексил-фосфорная кислота. [c.13]


Библиография для Технология циркония и гафния: [c.245]    [c.358]   
Смотреть страницы где упоминается термин Технология циркония и гафния: [c.213]    [c.355]    [c.92]    [c.313]    [c.313]    [c.352]   
Смотреть главы в:

Химия и технология редких и рассеянных элементов. Ч.2 -> Технология циркония и гафния

Химия и технология редких и рассеянных элементов Часть 2 Издание 2 -> Технология циркония и гафния




ПОИСК





Смотрите так же термины и статьи:

Гафний



© 2025 chem21.info Реклама на сайте