Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Испарение сложной смеси

    Наиболее эффективным способом разделения двойных и более сложных жидких смесей является ректификация. Она основывается на непрерывном и многократном чередовании испарения жидкости с конденсацией пара в одном и том же аппарате — ректификационной колонне. Здесь осуществляется принцип противотока, а именно жидкая смесь стекает по колонне сверху вниз, а нагретые пары идут навстречу этому потоку жидкости сии у вверх. Такое последовательное и многократное взаимодействие потоков пара и жидкой смеси сопровождается непрерывным и существенным изменением их состава до получения продуктов заданной чистоты. Следовательно, перегонка с дефлегматором и ректификация — это та же фракционная перегонка, но только проводимая как непрерывный процесс. [c.235]


    Обычно в качестве стандартного состояния элемента (простого вещества) выбирается такое состояние, при котором данный элемент устойчив при 1 атм. Выбор стандартного состояния для шести из рассматриваемых здесь девяти элементов очевиден — углерод в виде графита, водород, кислород, азот, фтор и хлор в состоянии идеального двухатомного газа при 1 атм во всем интервале температур от 298 до 1000° К. Бром, иод и сера стабильны в конденсированных фазах при 1 атм в интервале температур от 298° К до точек кипения этих элементов. Поэтому мы приняли в качестве стандартных состояний эти конденсированные фазы до нормальных точек кипения, а выше этих температур — состояния идеального двухатомного газа. Необходимо отметить, что это обусловливает при температурах фазовых переходов разрыв непрерывности изменения энтальпии образования всех соединений, в состав которых входят данные элементы. В случае серы наблюдается также небольшой разрыв непрерывности изменения энергии Гиббса для процессов образования, поскольку пар, находящийся в равновесии с жидкой серой при температуре кипения, представляет собой сложную смесь многоатомных молекул (х=к, 6, 8, причем возможны и другие значения). Испарение с образованием молекул За при 1 атм и 717,75° К не является равновесным процессом и, следовательно, связано с изменением энергии Гиббса. [c.228]

    Выбор растворителя зависит от многих факторов. Растворяющая способность, скорость испарения и другие свойства различны у разных растворителей. Обычно растворитель лака представляет собой смесь нескольких органических жидкостей. Самыми распространенными компонентами растворителей являются, очевидно, ацетон и сложные эфиры, как, например, бутил- и амилацетаты. В целом можно сказать, что слишком быстро высыхающий лак, растворитель которого быстро испаряется, образует менее прочную поверхность, чем лак, растворитель которого испаряется медленно. [c.165]

    На схеме 1, кроме того, помещен процесс однократного испарения. Этот своеобразный процесс заключается в том, что сложная смесь, содержащая летучие компоненты, частично превращается в пар без выделения паровой фазы в теплообменнике 1 (фиг. 1, (5). Затем паро-жидкая эмульсия выбрасывается в испаритель 2, где происходит процесс однократного испарения. В результате происходит выделение паровой фазы, обогащенной нижекипящим компонентом. Этот процесс обычно комбинируется с процессом последующей ректификации. [c.9]


    Нефтепродукты представляют собой сложную смесь углеводородов и гетероорганических соединений с различными физическими свойствами — температурой кипения и давлением насыщенных паров. Наиболее легкими нефтепродуктами являются бензины. Начало кипения (табл. 6) автомобильных бензинов выше 35 °С, а авиационных — выше 40 °С. Температура выкипания 10 % авиационных бензинов находится в пределах 75—88 °С и 55— 70 °С — автомобильных. Поэтому у бензинов наиболее сильно изменяется качество вследствие испарения головных фракций, [c.19]

    Как видно из табл. 8.33, при термоокислительной деструкции смазочного минерального масла образуется сложная смесь паров и аэрозолей, содержащая летучие продукты испарения и окисления масла, сложные эфиры, спирты, органические кислоты, кетоны, альдегиды и оксид углерода. Поэтому агрегатное состояние примесей масла в газах и их содержание требует учета при разработке средств контроля состава газов. [c.933]

    При постепенном нагревании компоненты угля претерпевают глубокие физические и химические превращения до 250°С происходит испарение влаги, выделение окиси и двуокиси углерода около 300°С начинается выделение паров смолы и образование пирогенетической воды выше 350°С уголь переходит в пластическое состояние при 500—550°С наблюдается бурное разложение пластической массы с выделением первичных продуктов (газа и смол) и твердение ее с образованием полукокса. Повышение температуры до 700°С сопровождается дальнейшим разложением полукокса, выделением из него газообразных продуктов выше 700°С преимущественно происходит упрочение кокса. Летучие продукты, соприкасаясь с раскаленным коксом, нагретыми стенками и сводом камеры, в которой происходит коксование, подвергаются пиролизу, превращаются в сложную смесь паров (с преобладанием соединений ароматического ряда) и газов, содержащих водород, метан и др. Большая часть серы исходных углей и все минеральные вещества остаются в коксе. [c.458]

    Процесс ректификации газа имеет целью разделить многокомпонентную газовую смесь на такое количество отдельных фракций, которые содержали бы в себе наименьшее количество индивидуальных углеводородов. Сложная смесь нефтяных углеводородов подвергается многократному испарению и конденсации, в результате которых она разделяется на свои составные части, соответственно температуре кипения каждой из них. [c.286]

    В широко распространенном аппарате ЦИАТИМ-60 кроме газовой имеется бензиновая колонка, предназначенная для разгонки бензиновых фракций. Под колонками размещена система для очистки анализируемого газа. В аппарате смонтированы электронный потенциометр, манометры, гидравлическая система с регулировочными вентилями, распределительная гребенка, а также откачивающее устройство. Сущность ректификации заключается в том, что после предварительной конденсации за счет охлаждения жидким азотом или жидким воздухом сложная смесь углеводородов подвергается многократному испарению и конденсации в колонке. В процессе ректификации автоматически записываются температуры отгонки фракций и изменение давлений в эвакуированном приемнике этих фракций. Изменение давления при установленной скорости отбора позволяет определять количество отогнанной фракции, а температура отбора — характер этой фракции. [c.29]

    Ректификационная колонна своим устройством обеспечивает многократное чередование испарения жидкости и конденсации паров, что позволяет разделять сложную смесь (нефти и нефтепродуктов) на отдельные фракции в зависимости от температуры кипения. Наибольшее распространение в нефтеперерабатывающей промышленности имеют тарельчатые колпачковые колонны. [c.241]

    Каменный уголь загружают в закрытые камеры — коксовые печи. При постепенном нагревании компоненты угля претерпевают глубокие физические и химические превращения до 250°С происходит испарение влаги, выделение оксида и диоксида углерода, около 300 °С начинается выделение паров смолы, выше 350 °С уголь переходит в пластическое состояние, при 500—550°С наблюдается бурное разложение пластической массы с выделением газа и смолы и твердение ее с образованием полукокса. При дальнейшем повышении температуры из полукокса выделяются остатки летучих веществ, и он превращается в кокс. Летучие продукты в зоне печи, нагретой до 1000°С, превращаются в сложную смесь паров с преобладанием ароматических соединений и газов, содержащих в основном водород и метан. [c.219]


    Сложная смесь может испаряться в условиях либо однократного, либо многократного испарения. Оба эти вида процесса испарения были подробно рассмотрены выше для случая двух вполне смешивающихся жидкостей там же описаны методика и аппаратура для опытного их проведения, применимые также для случая сложной смеси. Естественно, однако, что соотношения, характеризующие процесс исиарения сложной смеси, будут значительно сложнее. [c.392]

    Так, температура плавления остатка == 90 °С, т. е. значительно выше, чем парафинов, выделенных из экстрактов. В интервале температур 90-240 С идет нагревание расплава и только с температуры 240 °С начинается плавная потеря массы с испарением до 300 °С 3,3 % вещества. После 300 С скорость потери массы увеличивается и до 380 С происходит испарение 17,5 % вещества. При 380 °С расплав закипает и полностью выкипает в интервале температур 380-540 С. Этот процесс идет при плавном повышении температуры, так как образец представляет собой сложную смесь углеводородов, близкую к идеальной. [c.72]

    Как известно, нефть представляет собой сложную смесь большого количества взаимно растворимых углеводородов, имеющих различные температуры начала кипения. На этом свойстве нефти основана ее перегонка, т. е. ступенчатое испарение и конденсация отдельных фракций. [c.259]

    Изучалось испарение компонентов нелетучей матрицы в присутствии легкокипящих углеводородов. Учитывая сложный состав нефтей и нефтепродуктов, начальные исследования для удобства их интерпретации проводили на модельных смесях, составленных из легкой и тяжелой частей. В качестве легкой части применяли смесь индивидуальных углеводородов гептан-толуол (ГГ) в соотношении 1 1, а также бензиновые фракции с температурами выкипания 80- 120°С (Б1) и 120- 180 С (Б2), полученные при атмосферной перегонке смеси западно-сибирских нефтей. В качестве тяжелой части использовали гудрон — остаток вакуумной перегонки мазута западно-сибирских нефтей. [c.104]

    Как известно [], 21, процесс замедленного коксования протекает в две стадии. На первой— исходное сырье быстро нагревается й трубчатых змеевиках до 490—5Ю°С. При этом происходит частичное его испарение и разложение с образованием более легких и тяжелых продуктов, чем исходное сырье. Паро-жидкостная смесь поступает в пустотелый адиабатический аппарат — реакционную камеру. За счет большего, чем в трубчатом змеевике, времени пребывания в камере глубже идут реакции термической деструкции, полимеризации и поликонденсации. Это приводит к образованию целевого продукта — кокса, а также газа, бензина, газойлевой -фракции. В камере происходят сложные химические превращения, в результате которых совершается непрерывный процесс перехода системы из одного состояния в другое. Каждое новое состояние обладает иным запасом внутренней энергии, чем предыдущее. [c.133]

    Если для жидкостей можно избежать применения растворителей, ведя измерения в тонких слоях, то для твердых веществ задача становится гораздо более сложной. Метод приготовления пленок испарением при нагревании в вакууме не является надежным, так как для многих испытанных образцов были обнаружены новые полосы поглощения, что могло явиться результатом различных превращений вещества (образование изомеров, полиморфные превращения), происходящих при испарении [23]. Приготовление взвеси мелко растертого вещества в очищенном парафиновом масле (Ыи]о1) или гексахлорбута-диене в основном пригодно лишь для качественных измерений из-за наличия сильных полос поглощения носителя и из-за невозможности определения содержания вещества с достаточной точностью. То же можно сказать и о различных видоизменениях этих методов [24]. В последнее время рекомендуется новый способ приготовления образцов в виде тонких таблеток. Для этого порошок, представляющий смесь мелко растертого КВг, прозрачного в инфракрасной области, и исследуемого вещества, подвергается в течение 15—20 мин. давлению порядка 20 г. В результате таблетка принимает вид стеклообразной массы КВг с равномерно распределенными вкраплениями частичек исследуемого вещества. Опытная проверка показала пригодность нового метода для количественных измерений [25—27]. Однако надо иметь в виду, что применение спектров поглощения веществ, снятых в твердом состоянии, для анализа жидких фракций, в которых эти вещества находятся в растворенном состоянии, может привести к ошибочным выводам. Имеющиеся опытные данные го ворят о наличии довольно значительных расхождений между ними. Так, для твердых парафинов в области 13—14,5 ц наблюдается дублет, тогда как в жидком состоянии и в растворе изооктана сохраняется лишь одна длинноволновая компонента с резко ослабленной интенсивностью [28]. Не исключена возможность, что аналогичным свойством обладают спектры многих других классов органических соединений с длинными парафиновыми цепями. В настоящее время делаются попытки объяснить эти явления с точки зрения теории поворотной изомерии и особенностей меж-молекулярного взаимодействия в кристаллической решетке [81]. [c.421]

    Изложенное выше влияние температуры на теплоту парообразования рассмотрено для случая, когда испарение происходит под внешним давлением, равным давлению насышенного пара кипящей жидкости (упругости насыщенных паров), т. е. для случая двухфазного состояния индивидуального вещества (например, чистого пропана). Однако, когда имеется сложная или даже двухкомпонентная смесь (например, пропана и бутана), вступает в силу закон Дальтона, когда общее давление превышает упругость паров каждого компонента. При этом на теплоту парообразования значительное влияние оказывает второй фактор —давление. [c.96]

    Еслн горит индивидуальная жидкость, то состав паровой фазы ее не отличается от состава жидкой фазы. Если же горит жидкость сложного состава (смесь), то в верхнем слое ее происходит фракционная перегонка и состав паровой фазы не одинаков с составом жидкой фазы. К этой группе относятся такие распространенные горючие жидкости, как нефть и все нефтепродукты. При их горении происходит испарение в большей степени легко-кипящих фракций, в результате чего жидкая фаза изменяет свой состав, а вместе с этим удельный вес, вязкость и другие свойства. [c.192]

    Жидкое топливо, например, предварительно измельчается до дисперсного и даже тонкодисперсного состояния чисто механически. В последующей стадии путем теплового воздействия оно доводится до окончательного. молекулярного измельчения испарением. Предварительное механическое распыливание жидкого топлива в воздушном потоке создает лишь гетерогенную смесь, которая является только полуфабрикатом. В такой же степени нельзя называть горючей смесью слой кускового твердого топлива, продуваемый воздухом, или твердое топливо в распыленном виде, вдуваемое в поток воздуха. В этом случае предварительный газификационный процесс принимает более сложные формы и сопровождается явлениями возгонки, окислительных и одновременно восстановительных реакций. [c.13]

    Упругость насыщенных паров бензина, представляющих собой сложную смесь различных углеводородов, — величина переменная, зависящая от т-ры, концентрации компонентов в смеси, а также от соотношения паровой и жидкой фаз. При повышении т-ры У. п. б. повышается. Изменение упругости насыщенных паров бензина в зависимости от соотношения паровой и жидкой фаз связано с изменением концентрации различных углеводородов в топливе. При испарении бензина сначала испаряются преимущественно низкокипящие фракции с высокой упругостью паров, и таким образом испарение наиболее летучих фракций ведет к утяжелению жидкой фазы. Чем больше испаряется летучих фракций из бензина при данной т-ре, тем меньше упругость паров оставшейся жидкой части. Увеличение объема паровой фазы усиливает испарение легколету-яих фракций, и, следовательно, упругость насыщенных паров бензина будет тем меньше, чем больше отношение объема паровой фазы к жидкой. По стандартному методу, принятому в СССР для определения упругости паров бензинов и керосинов, отношение паровой фазы к жидкой 4 1. Упругость паров топлив [c.686]

    Жидкое топливо. В качестве жидкого топлива на цементных заводах, расположенных вблизи нефтеперерабатывающих предприятий, применяют высокопарафинистый, высокосернистый мазут. Мазут представляет собой смесь углеводородов, которые при повышении температуры легко испаряются и разлагаются. В результате термического распада из сложных углеводородов образуются более простые, а также водород, окись углерода н некоторое количество твердого углерода (сажи). Скорость горения газовоздушной смеси, образующейся при испарении капелек мазута, велика, в связи с чем создание необходимого факела в печи возможно и при сравнительно грубом распылении мазута. Теплотворная способность мазута составляет 35 ООО—42 ООО кДж/кг. [c.303]

    Испаряемость природных асфальтов, почти не заключающих легко кипящих примесей, гораздо ниже, чем у искусственных продуктов (1—9%). Для определения летучих примесей Унтенбогаарт (295) предложил нагревать исслед тмый образец в фарфоровой чашечке в течение нескольких часов при высокой и постоянной температуре, напр, в парах анилина, в бане соответствующего устройства. Роль привеса асфальта вследствие окисления кислородом воздуха не выяснена — она должна несколько компенсировать потерю вследствие испарения. Так как асфальт не прочен при повышенных температурах и представляет собой сложную смесь, потеря от испарения больше в начале нагревания и меньше в конце его. Это падение однако очепь постепенно, почему все определение процента испаряемости носит условный характер и зависит от многих обстоятельств. [c.359]

    Ядра конденсации могут состоять как из органического, так и из неорганического вещества, могут быть растворимыми, нерастворимыми или же нерастворимыми с тонким внешним слоем, состоящим из растворимого вещества (в этом случае они называются смешанными ядрами). Из-за многообразия существующих в природе растворимых веществ химический состав ядер конденсации не определен достаточно хорошо. Исследование смога показало, что около 60 % частиц состоят из неорганических веществ или минералов, а остальные представляют собой сложную смесь органических компонентов, угля и пыльцы [98]. Такое процентное соотношение не является неизменным везде. Частицы разных размеров могут отличаться и по химическому составу. Например, установлено [103], что большинство ядер диаметром 0,4-2 мкм состоит, главным образом, из сульфата аммония, в то время как состав частиц с диаметром, превышаюшлм 2 мкм, менее специфичен иногда такие частицы содержат значительное количество хлорида или нитрата натрия. Различают два типа нерастворимых ядер конденсации легко смачиваемые и несмачиваемые. Легко смачиваемые ядра быстро образуют капли. Для теоретического предсказания роста и испарения таких частиц ядро можно рассматривать как чистую каплю и непосредственно применять к нему уравнение Кельвина (но при меньшем предельном размере ядра). Конденсация пара на частицах с несмачиваемой поверхностью более затруднена. Конденсирующаяся жидкость на поверхности такой частицы стремится собраться в маленькие шарики, и жидкий слой образуется только тогда, когда поверхность покроется шариками целиком. Пока не достигается высокая степень пересыщения, конденсация на несмачиваемой частице не происходит [104]. [c.826]

    Погон 180—190°. Получилась весьма сложная смесь сульфокислот, из которой была приготовлена известковая соль. Часть этой соли, в спирте легко растворимая, при медленном испарении ее водного раствора осталась в виде густого, сильно окрашенного сиропа. Соответствующая ей сульфокислота оказалась также густой сиропообразной жидкостью. Нагреванием с крепкой соляной кислотой из этой сульфокислоты был получен углеводород, распавшийся при перегонке па несколько фракций. Из них фракция 178,7—182,7° по составу и по температуре кипения подходила к п-диэтилбензолу GgHjXGjHg), (т. кип. 182°) фракция же 187,6— 192,6°—к изоамилбензолу GgHgGgHji (т. кии. 193°). Оба эти углеводорода действительно дают легко расплывающиеся сульфокислоты возможно, что оба они действительно содержатся во фракции 180—190° исследованной нефти. [c.96]

    Органические смывки представляют собой сложную смесь растворителей с добавлением замедлителей испарения (парафина, воска, стеаратов металлов, флотирующихся пигментов), загустителей (эфиров целлюлозы, перхлорвинила, древесной муки, аэросила), разрыхлителей (уксусной, муравьиной, фосфорной кислот, аммиака), ПАВ и ингибиторов коррозии (при наличии кислот). Простейшей смывкой может служить смесь, состоящая из 60% ацетона, 30% бензола и 10% парафина. Однако она малоактивна и непригодна для удаления многих химически стойких покрытий. Более эффективными являются смывки, изготовляемые с применением высокоактивных растворителей ме-тиленхлорида, трихлорэтилена, формальгликоля, метилдиоксана, диметилформамида, тетрагидрофурана и их смесей со спиртами, кетонами, ароматическими углеводородами, аминами и другими соединениями. Предпочтительны негорючие смывки, которые изготовляют либо на основе галогенсодержащих углеводородов, либо в виде водных эмульсий. [c.299]

    Существенно влияет на предпламенную зону предварительный подогрев первичного воздуха, особенно если он достаточно значителен, чтобы обеопечить не только подсушку топлива, но и ранний выход летучих. К сожалению, такой достаточно значительный воздухоподогрев технически довольно трудно осуществим в котельных установках. Нередко первичный воздух несет и испаренную влагу топлива, балластирующую первичную горючую смесь и снижающую ее способность к воспламенению. В этих случаях следует применять несколько более сложную схему присоединения пылеразмольной системы к топке, со сбросом отделенного от пыли (ос- [c.236]

    Хромадистилляцию проводят при отрицат. температурном фадиенте с применением инертного твердого носителя анализируемая смесь полностью разделяется в результате многократного испарения в потоке газа-носителя при более высоких т-рах и ковденсации при более низких т-рах. Изменение т-ры во времени от -100 до 400 С позволяет осуществлять фракционную разгонку сложных смесей нефтепродуктов в щироком диапазоне т-р кипения от 36 до 800 С. Поскольку при хромадистилляции величина пробы примерно в 1000 раз превыщает таковую для ГХ, создаются возможности. для соответствующего увеличения чувствительности определения примесей, измерения физ.-хим. характеристик компонента при высоких концентрациях в р-ре. [c.318]

    В конденсатор (рис. 5.12, г) входит парогазовая смесь и выходят два потока сконденсированные компоненты (конденсат) и несконденси-ровавшаяся часть входной смеси. Входяший поток в сушилке (рис. 5.12, б) разделяется на осушенное вешество и испаренные компоненты. Аналогичны процессы, протекаюшие в десорбере (удаление растворенного газа из жидкости изменением температуры, давления) и дистилляторе (частичное испарение компонентов сложной смеси). [c.255]

    Уравнение Бенедикта — Уэбба — Рубина долгое время использовалось как стандартное для определения Ki обеих фаз, однако, как считают некоторые исследователи, оно слишком сложно, чтобы его имело бы смысл применять при повторяющихся расчетах, например при решении задач, связанных с дистилляцией. В настоящее время для решения такого рода задач разработаны более простые методы расчета, примером может служить программа Кристиансена и др. [222] для многокомпонентной дистилляции, включая уравнение Соава. Результаты, полученные по основному алгоритму с акцентом на критические области и зоны высокого давления, рассмотрены на основе уравнения Соава — Асселина и др. [165]. Схема дистилляции с применением уравнения Соава или Пенга —Робинсона для оценки АГ, в задачах криогенной техники превосходит метод Чао — Сидера [632]. Сим и Доберт [637] пришли к выводу, что метод Соава наиболее пригоден для расчетов процессов испарения нефтяных смесей. Они разделяли смесь на фракции с интервалом по температуре кипения в 25°С и соотносили среднюю точку кипения Ть и плотность S с молекулярной массой М и критическими характеристиками, необходимыми для решения уравнения Соава. Ниже приведены эти эмпирические зависимости  [c.311]

    Так как влага может быть удалена из глиняных изделий только путем испарения с поверхности, а из внутренних частей продвигается наружу только под действием силы, связаннойс градиентом концентрации , то полное устранение усадочной деформации при сушке невозможно. Она может быть, однако, сведена к минимуму при достаточной продолжительности сушки и при соответствующем контроле температуры и влажности, необходимом для устранения неравномерного распределения влаги на поверхности. Такой контроль вместе с тепловым режимом лучше всего достигается при использовании противоточных сушилок, преимущественно туннельного типа. Чем более пластична смесь и более сложна форма, тем более тщательна должна быть сушка .  [c.457]

    Смесь после отстоя от воды и ДЗГ в виде рециркулята возвращается в экстракционную колонну. Вывод парафиновых углеводородов с экстрактом ухудшает ка-чество индивидуальнь1х ароматических соединений, а повышенный против оптимального отгон ароматических углеводородов в рециркулят приводит не только к увеличению расхода рециркулята, но и значительному повышению доли ароматических углеводородов в рафинате. Содержащиеся в насыщенном растворе ДЭГ парафиновые углеводороды С , С и шше отогнать в камере однократного испарения и даже с верха отпарной части колонны достаточно сложно, в результате некоторая часть гептанов или октанов попадает в экстракт, затрудняя получение высокочистых ароматических углеводородов. [c.158]

    Сгорание как сложный химический процесс развивается в условиях резко изменяющихся температур и концентраций взаимодействующих веществ. Температура при горении углеводо-родно-воздушных смесей изменяется в довольно широких пределах и достигает 2000 С. В зависимости от температуры изменяется не только механизм химических реакций, но и скорость сопутствующих процессов тепло- и массообмена. От температуры зависят скорости образования и распада многих промежуточных продуктов химических превращений, скорости процессов переноса активных частиц из зоны горения в свежую смесь и т. д. Часто горение проходит в условиях продолжающегося испарения капель жидкого топлива и смешения его паров с воздухом, причем теплота, необходимая для испарения топлива, подводится из зоны горения. [c.40]

    Для химической механики весьма важно отличить обратимые реакции от необратимых. Вещества, могущие реагировать друг на друга при данной температуре, дают такие тела, которые при той же температуре или могут, или не могут давать первоначальные вещества. Так, напр., соль растворяется в воде при обыкновенной температуре, но получающийся раствор может распадаться при той же температуре, оставляя соль и выделяя воду испарением. Сернистый углерод происходит из серы и угля при такой температуре, при которой может и обратно давать серу и уголь. Железо выделяет при некоторой температуре водород из воды, образуя окись железа, но она при той же температуре с водородом может давать железо и воду. Очевидно, что если тела А и В дают С и В реакция обратима (т.-е. С и 13 дают А и В), то, взяв определенную массу А и В, или им соответственную массу С и В, мы получим в обоих случаях все четыре тела, т.-е. наступит между реагирующими веществами химическое равновесие (или распределение). Увеличивая массу одного из веществ, получим новые условия равновесия, так что обратимые реакции доставляют возможность изучать влиявие массы на ход химических превращений. Примерами необратимых химических реакций могут служить многие из тех, которые происходят с очень сложными соединениями и смесями. Так, многие сложные вещества организмов (растений и животных) в жару распадаются, но ни при этой температуре, ни при других продукты распадения не дают сами по себе первоначального вещества. Порох, как смесь селитры, серы и угля, сгорая, дает газы и пороховой дым, которые ни при какой температуре обратно не дают начальных веществ. Чтобы их получить, необходим обходный путь — соединения по остаткам. Если А прямо ни при каких условиях не соединяется с В, то это еще не значит, что не может быть по.лучено соединение АВ. Часто А можно соеди- [c.45]


Смотреть страницы где упоминается термин Испарение сложной смеси: [c.38]    [c.227]    [c.96]    [c.310]    [c.13]    [c.28]    [c.13]    [c.1189]    [c.424]    [c.153]    [c.49]    [c.55]   
Смотреть главы в:

Химия нефти -> Испарение сложной смеси

Собрание трудов Том 3 -> Испарение сложной смеси




ПОИСК







© 2025 chem21.info Реклама на сайте