Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Числа переноса и активность

    Мембраны электрохимически активные (изменяющие числа переноса ионов). [c.171]

    В растворе ток переносят ионы Н+ и С1 , причем вклад каждого из них можно оценить, зная числа переноса. Если гальванический элемент произвел один фарадей электричества, количество ионов водорода в растворе с активностью возросло за счет окисления на аноде на 1 моль. Поскольку t+ фа радея перенесено ионами водорода к катоду, их количество в растворе с активностью уменьшится на t+ моль. [c.232]


    Следующий шаг вперед был сделан В. В. Стендером с сотрудниками. Они воспользовались методикой подсчета, данной Бете и Тороповым, и подробно рассмотрели процесс электродиализа для системы, реально осуществлявшейся в трехкамерном электродиализе, а именно в средней камере — раствор соли, в анодной камере — р аствор кислоты, а в катодной — раствор щелочи. В. В. Стендер подразделял мембраны на изменяющие числа переноса ионов, которые он назвал электрохимически активные , и на не изменяющие числа переноса — электрохимически неактивные . Он рассмотрел процесс электродиализа с электрохимически неактивными мембранами в системе раствор кислоты I раствор соли раствор щелочи как простой электролиз, предположив, что в процессе электродиализа поры анодной мембраны пропитаны раствором кислоты из анодной камеры, а поры катодной — раствором щелочи из катодной камеры. А. В. Маркович объединил все эти положения, дополнил их и дал общую теорию процесса электродиализа, основывающуюся на соотношениях чисел переноса. А. В. Маркович разделяет мембраны, применяющиеся в электродиализе, на три группы. [c.171]

    Электрохимическая активность живых тканей представляет значительный интерес в связи с переносом ионов в организме, как под действием внешних полей, так и в процессах обмена веществ,, явлениях проницаемости тканей, их возбуждения, проведения нервных импульсов и др., связанных с биопотенциалами. Так, числа переноса ионов в коже определяют эффективность и о н о-фореза — метода введения лекарственных веществ в организм [c.234]

    Браун -и Мак-Иннес [13] использовали весьма точные данные по числам переноса, полученные по методу движущейся границы, для определения коэффициентов активности галогенидов путем измерения электродвижущих сил элементов с переносом. Они применяли элемент [c.297]

    При наличии электрохимически активных мембран направление процесса, т. е. уменьшение или увеличение концентрации электролита в средней камере, зависит от соотношений чисел переноса в по>рах анодной и катодной мембран. Если катодная мембрана повышает число переноса катиона по сравнению со свободным раствором, а анодная мембрана повышает число переноса аниона, т. е. (па)1> (иа)о и (мк)п> (пк)о, и так как ( к)1+ ( 01)1= ( к) 11+ ( а) 11= 1, то [c.173]

    Максимальная разница в числах переноса между мембранами (Ап = 1) может быть достигнута, как мы ранее видели, использованием двух идеально электрохимически активных мембран. Поэтому значительное внимание в наших исследованиях было уделено получению такого рода мембран. Когда мы рассматривали вопрос о тех требованиях, которым должны удовлетворять [c.175]


    Для определения чисел переноса используют разность потенциалов на концах концентрационной цепи с переносом типа (Н). Если известны коэффициенты активности (а, следовательно, и значения а ) в исследуемых растворах, то число переноса аниона 1- можно рассчитать по уравнению (VI.40). При этом концентрации двух растворов т.1 и не должны сильно отличаться друг от друга тогда найденные числа переноса L и 1+ = —I- будут соответствовать средней концентрации [c.129]

    Наряду с числами переноса, характеризующими электрохимическую активность мембраны в целом, полезно ввести представления о числах переноса нонов в ДЭС отдельной коллоидной частицы или капилляра. Эти числа переноса характеризуют долю участия противоионов в поверхностном токе, их относительный вклад в удельную поверхностную проводимость Ks- Связь [c.219]

    Наряду с числами переноса, характеризующими электрохимическую активность мембраны в целом, полезно ввести пред- [c.241]

    N0 " и Ag -, а а" и а — активности Ag+, соответствующие концентрациям С" и С. Из этого уравнения следует, что Ей зависит от разности между числами переноса и t+, при очевидно д=0. [c.127]

    Применяя мембраны, изменяющие числа переноса, т. е. электрохимически активные, можно значительно ускорить процесс электродиализа. Если поставить отрицательно заряженную мембрану на катодную сторону трехкамерного диализатора, то такая диафрагма будет увеличивать число переноса катионов, а положительно заряженная мембрана на анодной стороне будет увеличивать число переноса анионов. Таким образом можно значительно увеличить разницу чисел переноса ионов между диафрагмами. Такие диафрагмы называют идеально электрохимически активными. Разница между числами переноса в этом случае доходит до единицы, и выход по току достигает 100%. [c.258]

    Передача цепи на низкомолекулярные соединения происходит за счет отрыва радикалом -подвижных атомов от молекул растворителя, регулятора полимеризации или примесей, содержащихся в мономере. В литературе приведены константы передачи цепи Сз для большого числа органических веществ [12 20, с. 150]. Радикалы, образующиеся в результате передачи цепи, во многих случаях имеют меньшую активность, чем винилацетатные или поливинилацетатные радикалы, и потому реакция -переноса цепи замедляет общую скорость полимеризации ВА. Такой перенос активных центров, приводящий к вырождению кинетических цепей, называют деградационным . К числу соединений, снижающих скорость полимеризации ВА, относятся ароматические углеводороды, некоторые хлорированные углеводороды, аллильные соединения и др. [c.13]

    Точные значения коэффициентов активности хлористого натрия, хлористого калия, бромистого калия и хлористого кальция в разбавленных водных растворах для температур 15 — 45° были получены Гордоном и его сотрудниками из данных по числам переноса и электродвижущим силам элементов с жидкостным соединением с помощью метода Брауна и Мак-Иннеса, описанного в гл. XII, 1. Полученные результаты можно выразить с помощью уравнения [c.567]

    Перхлораты редкоземельных металлов. Сообщалось о спектрах с длинами волн от 260 до 1200 ммк для водных растворов перхлоратов празеодима,неодима, самария,европия, гадолиния, диспрозия, эрбия и иттербия . Спеддинг и Яффе определили числа переноса, эквивалентные электропроводности, коэффициенты активности и плотность водных растворов перхлоратов указанных восьми редкоземельных металлов. [c.58]

    Электрохимическая активность живых тканей представляет значительный интерес в связи с переносом ионов в организме, как под действием внешних полей, так и в процессах обмена веществ, изменения проницаемости тканей, их возбуждения, проведения нервных импульсов и др., связанных с биопотенциалами. Так, числа переноса ионов в коже определяют эффективность ионофоре-3 а — метода введения лекарственных веществ в организм человека через кожу постоянным током, широко применяемого в медицинской практике. Коллоидно-химическое исследование ионофореза в работах Цыгир и Фридрихсберга позволило установить основы [c.217]

    Электрохимические цепн с диффузионными потенциалами, на величину э. д. с. которых влияют числа переноса, называются цепями с переносом. Наличие диффузионных потенциалов, точно рассчитать которые в общем случае невозможно или для точного расчета их необходимо знать числа переноса как функции концентрации, затрудняет использование концентрационных цепей типа (а) (стр. 562) для расчета активностей растворенных солей. Поэтому очень важно осуществлять концентрациоиные цепи без диффузионных потенциалов, т. е. цепи без переноса [типа (б)]. [c.568]

    Таким образом, полученный нами экспериментальный материал хорошо подтверждал предсказанное теорией направление процесса электродиализа в зависимости от применения мембран различной электрохимической активности. Однако полученные данные только качественно соответствовали основным выводам теории. Поэтому мы задались целью провести более строгую количественную проверку вытекающих из теории заключений и в первую очередь выяснить, какие условия определяют заполнение пор мембран в процессе электродиализа тем или иным раствором электролита. Такая проверка была проведена в работе Е. М. Лапинской с использованием методики проточных боковых камер, что нами ранее уже рассматривалось (см. рис. 105). Были проведены опыты с коллодиевыми и желатиновыми мембранами в условиях, когда все три камеры электродиализатора были заполнены одним и тем же раствором КС (первый режим) и когда в анодной камере находился раствор НС1, в средней камере — раствор КС1 и в катодной — раствор КОН (второй режим). Предварительно в отдельных опытах определялись числа переноса для выбранных образцов мембран в растворах НС1, КС1 и КОН. Исходя из результатов определений чисел переноса были рассчитаны концентрационные изменения раствора КС1 в средней камере, которые должны быть, согласно разнице чисел переноса, между анодной и катодной мембранами. [c.179]


    Для определения чисел переноса используют разность потенциалов на концах концентрационной цепи с переносом типа (Н). Если известны коэффициенты активности (а следовательно, и значения а ) в исследуемых растворах, то число переноса аниона I- можно рассчитать по уравнению ( 1.40). При этом концентрации двух растворов т, и Шг не должны сильно отличаться друг от друга тогда найденные числа переноса 1- и /+=1—I- будут соответствовать средней концентрации теПри определении чисел переноса методом ЭДС можно избежать необходимости заранее знать коэффициенты активности в исследуемых растворах. В этом случае для двух заданных и не сильно отличающихся концентраций исследуемого раствора проводят измерения разности потенциалов в цепях (Н) и (О). Из уравнений ( 1.40) и ( 1.42) находим [c.148]

    Найти диффузионный потенциал на границе двух растворов AgNOs при 291,2 К, если отношение средних активностей в этих растворах равно 10 и число переноса [c.32]

    ДИФФУЗИОННЫЕ ПРОЦЕССЫ, см. Массообмен. ДИФФУЗИОННЫЙ ПОТЕНЦИАЛ, разность потенциалов на грашще двух соприкасающихся р-ров электролитов. Обусловлен тем, что скоросги переноса катионов и анионов через границу, вызванного различием их электрохим, потенциалов в р-рах 1 и 2, различны. Наличие Д. п. может вызывать погрешность при из.мерениях электродного потенциала, поэтому Д. п. стремятся рассчитать или устранить. Точный расчет невозможен из-за неопределимости коэф. активности ионов, а также отсутствия сведений о распределении концентраций ионов в пограничной зоне между соприкасающимися р-рами. Если в контакте находятся р-ры одного и того же z, 2-зарялного электролита (z-число катионов, равное числу анионов) разл. концентраций и можно считать, что числа переноса анионов и катионов, соотв. /+ и не зависят от их активности, а коэф. активности анионов и катионов равны между собой в обоих р-рах, то Д. п. [c.101]

    Э. ц. составляют основу химических источников тока. Измерения эдс соответствующим образам подобранных Э. ц. позволяют находить коэф. активности компонентов электролитов, числа переноса ионов, произведения растворимости разл. солей, оксвдов, константы равновесия ионных р-ций (константы диссоциации слабых к-т и оснований, константы устойчивости растворимых комплексов, в т. ч. ступенчатые константы). Эдс хим. Э. ц. однозначно связана с изменением свободной энергии Гиббса ДО в ходе соответствующей хим. р-ции Е = -АО/пР (п - число участвзтощих в р-ции электронов Р - число Фарадея), поэтому измерения эдс могут использоваться для расчета АС, причем часто электрохим. метод определения как относительно простой и высокоточный имеет существенные преимущества перед термохим. методами. Применение ур-ния Гиббса-Гельмгольца к Э. ц. при постоянном давлении приводит к соотношению  [c.463]

    Однако при уменьшении размера пор коллодийной мембраны до 9,7 и 0,9 числа переноса С1 -ионов в мембране уменьшаются, соответственно, до 0,42 и 0,20 (Григоров). Такую мембрану выгодно поместить на катодной стороне электродиализатора, так как она увеличивает число переноса катионов, т. е. является электрохимически активной мембраной. Напротив, электрохимически-актив-ную положительную мембрану выгодно поместить на анодной стороне электродиализатора, где она увеличивает число переноса анионов. В результате процесс электродиализа может быть ускорен, и использование проходящего тока значительно улучш ено. Жуков и Маркевич выяснили условия регулирования pH и хода очистки в средней камере [c.215]

    Проведение анализа. Берут точную навеску 0,1 мэкв образца в круглодонной колбе емкостью 25 мл и растворяют ее в 2,00 мл стандартного раствора этанола- Н. Добавляют в колбу 10 мл безводного толуола. Колбу соединяют через переходник с микро-перегонной колонкой и погружают ее в восковую баню с температурой 170Х. В течение 5 мин собирают 4—5 мл дистиллята, затем перегонную колонку отсоединяют от колбы, выждав 15—30 с для испарения этанола- Н из переходника. После этого быстро охлаждают остаток в колбе, доливают его примерно до 10 мл толуолом, переносят полученный раствор в мерную колбу емкостью 50 мл и доводят объем раствора в колбе до метки спиртовым раствором сцинтиллятора. Для определения радиоактивности пробы измеряют радиоактивность четырех аликвотных порций полученного раствора с помощью жидкостного сцинтилляционного спектрофотометра. При необходимости определяют поправку на эффект тушения частиц методом внутреннего стандарта. Число п активных атомов водорода в молекуле вычисляют по формуле [c.248]

    Электропроводность, транспорт ионов кислорода и термическое расширение твердых растворов Bi(Zr, Y)Oi 5 и Bi(Y, Pr)0 ,5 были изучены с точки зрения их использования для высокотемпературного отделения кислорода [15]. Применение твердых электролитов в виде тройных систем В120з—ZЮ2—Y2O3, имеющих высокую ионную проводимость, в электрохимических ячейках с серебряными электродами имеет преимущество в сравнении с твердым электролитом состава BiYOi s. Образование серий непрерывных твердых растворов со смешанной ионной и электронной проводимостью было подтверждено для системы (В1 0 5)1 у(РЮ1,8зз)у при д = 0,25—0,50 и у = О—0,15. Числа переноса ионов кислорода для керамик, содержащих празеодим, составляют 0,85—0,10. Электроды на основе керметов, содержащих серебро и кобальтиты типа Ьп(8г)СоОз (где Ln — ион РЗЭ), обладают намного более высокой электрохимической активностью в сравнении с электродами, содержащими только кобальтиты, и имеют много большую механическую прочность в сравнении с серебряными электродами. [c.276]

    Равновесие жидкость — твердое Равновесие газ — жидкость Равновесие твердое — газ Равновесие жидкость — жидкость Крносколические и эбуллиоскопические константы Свойства гомогенных жидких растворов Плотность растворов Коэффициенты активности Энергетические свойства растворов Теплопроводность растворов Электропроводность растворов и числа переноса Вязкость растворов Поверхностное натяжение растворов Показатели преломления растворов Электродные процессы [c.7]


Смотреть страницы где упоминается термин Числа переноса и активность: [c.205]    [c.41]    [c.45]    [c.96]    [c.45]    [c.225]    [c.225]    [c.111]    [c.123]    [c.423]    [c.27]    [c.234]    [c.197]    [c.456]    [c.101]    [c.119]    [c.216]    [c.340]    [c.403]   
Смотреть главы в:

Поверхностно-активные вещества -> Числа переноса и активность




ПОИСК





Смотрите так же термины и статьи:

Активность, подвижность и числа переноса ионов

Метод э. д. с при определении коэффициентов активности, чисел переноса, произведений растворимости и констант равновесия ионных реакций

Определение коэффициентов активности электролитов по Определение чисел переноса по величинам

Числа активности

Числа переноса

Электропроводность. Числа переноса. Коэффициенты активности



© 2025 chem21.info Реклама на сайте