Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Числа активности

    Увеличение скорости реакции с повышением температуры вызывается главным образом а) увеличением средней кинетической энергии молекул б) возрасчанием числа активных молекул в) ростом числа столкновений  [c.105]

    Чем объясняется повышение скорости реакции при введении в систему катализатора а) уменьшением энергии активации б) увеличением средней кинетической энергии молекул в) возрастанием числа столкновений г) ростом числа активных молекул  [c.104]


    Согласно представлениям, принятым в химии нефти, ненасыщенные углеводороды обладают одной или большим числом активных двойных связей в молекуле. В противоположность ароматическим углеводородам двойная связь в ненасыщенных углеводородах обнаруживает способность ко многим реакциям присоединения, например таким, как присоединение галоидов и серной кислоты. Ненасыщенные углеводороды всегда отсутствуют в продуктах прямой гонки, но представляют собой важный класс углеводородов в крекинг-бензинах. Присутствие двойной активной связи легко обнаружить в углеводородах низкого и среднего молекулярного веса, включая газойли. Свойства высокомолекулярных ненасыщенных соединений почти неизвестны, поэтому любые выводы о составе ненасыщенных высококипящих фракций следует считать недостоверными. [c.12]

    Для реакций, скорость протекания которых можно измерить обычными методами, возможен следующий критерий согласованности числа активных частиц в реагирующей системе с максвелл-больцмановским распределением. Если энергия активации достаточно велика, то число активных частиц составит незначительную долю всех частиц системы. Незначительная их убыль в ходе реакции будет легко восполняться в результате активации при столкновениях. Если же энергия активации мала, то значительная доля частиц является реакционноспособной, и максвелл-больцмановское распределение уже не будет успевать восстанавливаться за счет столкновений. Таким образом, практически удобным критерием соблюдения максвелл-больцмановского распределения во время реакции будет неравенство  [c.130]

    Скорость химической реакции возрастает в присутствии катализатора. Действие катализатора объясняется тем, что при его участии возникают нестойкие промежуточные соединения активированные комплексы), распад которых приводит к образованию продуктов реакции. При этом энергия активации реакции понижается и активными становятся некоторые молекулы, энергия которых была недостаточна для осуществления реакции в отсутствие катализатора. В результате общее число активных молекул возрастает и скорость реакции увеличивается. [c.93]


    Осушка газа твердыми поглотителями основана на явлении адсорбции — концентрирования одного из компонентов паровой или жидкой фазы на поверхности твердого вещества (адсорбента). Природа сил, удерживающих эти компоненты на поверхности адсорбента, полностью не выяснена. Предложено много теорий, объясняющих это явление. Согласно теории Лэнгмюра, на поверхлости твердых адсорбентов имеются участки со свободными остаточными валентностями. Когда адсорбируемая молекула из газовой фазы попадает на незанятый активный центр поверхности, молекула не отталкивается в газовую фазу, а остается связанной с поверхностью. В начальный момент адсорбции существует весьма большое число активных центров и число молекул, связанных поверхностью, превышает число молекул, отрывающихся от нее. По мере покрытия всей поверхности вероятность попадания молекул газа на незанятый активный центр уменьшается, наступает состояние равновесия, при котором скорость адсорбции и десорбции выравнивается. В соответствии с теорией Лэнгмюра, адсорбированное вещество удерживается на поверхности адсорбента в виде пленки мономолекулярно11 толщины. Допускается вместе с тем, что силовые поля адсорбированных молекул могут претерпеть такие изменения, что они будут спо-собн1.[ притягивать к себе второй такой слой, третий и т. д. С повышением давления и понижением температуры количество адсорбированного вещества увеличивается. [c.158]

    Реакция, в которой один активный центр — одновалентный атом Н — приводит к образованию трех новых свободных валентностей НО и О, называется реакцией разветвления цепи. При определенных условиях может происходить прогрессивное увеличение числа активных центров, приводящее к цепному воспламенению. Скорость реакции, которая начинается с очень низких значений, затем увеличивается и проходит через максимум по мере расходования реагентов. [c.373]

    На более раннем этапе исследования элементарные стадии переноса водорода и перестройки углеродного скелета в молекуле С-циклогексана в ходе его гидрогенолиза на нанесенных Pt-катализаторах обсуждались в работе [240]. Развита теория дефектных структур, ответственных за катализ теория позволяет оценить число активных центров, приходящихся на одну молекулу циклогексана, для разных типов катализатора. Это число лежит в пределах от 1 до 4. [c.166]

    Реакция одного активного центра — атома" Н — приводит к образованию трех активных центров. Вследствие этого происходит прогрессивное увеличение числа активных центров, а следовательно, и скорости реакции вплоть до воспламенения. Как будет показано позже, наиболее медленной стадией в такой цепной реакции является реакция Н -f Oj ->-0Н -1- О. [c.382]

    Платина на катализаторе риформинга не только ускоряет реакции гидрирования-дегидрирования, но и замедляет образование кокса на его поверхности. Обусловливается это тем, что адсорбированный на платине водород сначала диссоциируется, за ем активный (атомарный) водород диффундирует на поверхнос — ти катализатора к кислотным центрам, ответственным за образование коксовых отложений. Коксогены гидрируются и десорбируются с поверхности. Б этой связи скорость образования кокса при прочих равных условиях симбатно зависит от давления водорода. Поэтому минимальная концентрация платины в катализаторах ри — форминга определяется необходимостью прежде всего поддерживать их поверхность в чистом виде, а не только с целью образования достаточного числа активных металлических центров на поиерхности носителя. [c.181]

    Простейшим допущением относительно поверхностей 81 является допущение о их однородности. Такая однородная гетерогенная поверхность будет содержать равное число активных центров для каждого значения Kid. Эти значения будут составлять некоторый конечный ряд величин [c.538]

    В практике гетерогенных каталитических процессов активность катализаторов оценивается временем контакта и числом активности или производительностью катализатора [c.231]

    Числом активности или производительностью катализатора А называется практический выход продукта ( =практ.) с единицы поверхности (м ), веса (кг) или объема (м ) катализатора в единицу времени (минуту, час)  [c.231]

    Сейчас точно установлено, что поверхность твердого тела неоднородна, а также, что хемосорбция и химическая реакция протекают лишь на определенных участках поверхности. Эти участки обычно называют активными участками, активными центрами или активными точками. Понятие о порядке числа активных центров дает расчет общего числа активных участков, выполненный для процесса крекинга кумола при этом получена величина 3,6-1019 г-1, или 1,2.10 .ж-2. [c.207]

    Зародыши новой фазы продукта возникают тогда, когда локальные флуктуации энергии в кристалле исходного продукта достаточно велики, чтобы в определенных точках кристалла была превышена так называемая энергия активации образования зародыша. Зародыши возникают в тех точках кристалла, в которых энергия активации их образования наименьшая. Число зародышей, возникающих в определенный промежуток времени, зависит от числа активных точек, способных к образованию зародыша, и от средней энергии активации его образования. Точки, в которых может появиться зародыш, связаны обычно с такими структурными неоднородностями, как микро- и макродефекты. [c.258]


    С ростом температуры число активных молекул возрастает. Отсюда следует, что и скорость химической реакции должна увеличиваться с повышением температуры. Действительно, при возрастании температуры химические реакции протекают быстрее. [c.175]

    Следует еще раз подчеркнуть, что все рассуждений о механизме адсорбции и кинетике контактных реакций на неоднородной поверхности базируются на гипотетических предположениях, касающихся 1) числа активных участков с различной адсорбционной способностью 2) зависимостей между характеризующими эти активные места величинами, такими как теплота адсорбции, энергия активации адсорбции и энергия активации десорбции. [c.281]

    Важная роль трех основных стадий реакции (инициирование, развитие и обрыв) как факторов, определяющих скорость реакции, рассматривается ниже. Назначение стадии инициирования заключается в образовании активных центров, каждый из которых возбуждает периодически повторяющиеся циклы реакции. В основном общая скорость окисления является функцией числа активных центров, образующихся в единицу времени (скорость инициирования Г ) из числа повторений каждого цикла. Последний фактор представляет собой кинетическую длину цепи Ь). Точно так же, общая скорость окисления определяется произведением скорости полимеризации на длину цени [c.288]

    В ходе химической реакции непрерывно убывает число активных молекул, превращающихся в продукты реакции. Если скорость реакции значительно меньше скорости молекулярнокинетической активации, относительное число активных молекул будет сохраняться постоянным и максвелл-больцмановское распределение не будет искажено. Если же реакция протекает достаточно быстро и скорость ее сравнима со скоростью активации, относительное число активных частиц будет убывать, т. е. будет происходить так называемое выгорание активных частиц. Это явление имеет большое значение для интерпретации быстрых процессов — взрывных и разветвленных цепных. [c.130]

    Как мы видели выше, существуют цепные реакции, в которых гибель одной активной частицы приводит к возникновению большего числа активных частиц. Это так называемые разветвленные цепные процессы. Для них <й>1 и, следовательно, вы- [c.206]

    Если рассматривать поверхность катализатора как набор определенного числа активных центров S°, способных образовывать химические связи с адсорбироваными частицами, то можно ожидать, что вещества, которые могут вступать в реакцию с активными центрами катализатора, будут ингибировать процесс. При этом эффективность ингибирования будет зависеть от относительного давления адсорбатов и их констант сорбции. Рассмотрим в качестве примера простую ленгмюровскую сорбцию двух сорбатов АиВ на активных центрах поверхности S°  [c.543]

Рис. 67. Влияние катализатора на число активных молекул Рис. 67. <a href="/info/26056">Влияние катализатора</a> на <a href="/info/9463">число активных</a> молекул
    Другое объяснение предполагает [50], что акт сорбции вызывает одновремеиное уменьшение числа активных центров со скоростью, пропорциональной произведению S (i0/dг. Физическая модель такого падения скорости кажется весьма несовершенной. [c.551]

    Это значит, что с ростом температуры число активных центров на единицу поверхности сначала растет и, только начиная с определенной температуры, убывает. Подобные кривые невозможно объяснить, исходя из представления о спекании как о поверхностном плавлении активных центров или исходя из эффекта, связанного с уменьшением общей повмхности с повышением температуры. Это явление с позиций термодинамики было рассмотрено О. П. Пол-торакои, который исходил из следующей модели активные центры являются атомной фазой , адсорбированной на поверхности кристалла. При этом оказалось, что для мелкодисперсных кристаллов количество атомной фазы иа единицу поверхности уменьшается с ростом кристаллов. Таким образом, с изменением температуры протекают два конкурирующих процесса сначала при повыщении температуры обработки катализаторов увеличивается число дефектов, а следовательно, и их поверхностная концентрация ири дальнейшем повышении температуры увеличение числа дефектов и их подвижности приводит к росту кристаллов, а следовательно, к уменьшению поверхностной концентрации дефектов. [c.338]

    Всякий раз, когда происходят два последних элементарных акта, вместо одного радикала -Н или -О- рождаются два свободных радикала -ОН и -О- или -ОН и -И. Таким образом прогрессивно yвeли ивается число активных частиц и сильно возрастает скорость реакции. Подобные цепные реакции называются разветвленными- [c.201]

    В работах [171, 172] термодесорбционным и кинетическим методами изучено взаимодействие н-гептана с Р1, нанесенной на А12О3, с носителем (А Оз), а также с модифицированными Р1-катализаторами — (Р1— РЬ)/ /АЬОз и (Р1—5п)/А120з. При нагревании образцов Р1-катализатора с поверхности десорбируются исходный н-гептан и продукты дегидроциклизации — толуол и бензол. Определены температурные интервалы десорбции и число активных центров. На основании результатов термодесорбционных и кинетических исследований предположили наличие на поверхности Р1/АЬ0з не менее двух типов активных центров платины. На одном из них, [c.251]

    Во-первых, энергию активации мож[Ю рассчитать по экспе-)иментальной зависимости константы скорости от температуры. 1утем подстановки полученного значения в уравненпе (IV, 3) может быть получено число активных, т. е. приводящих к реакции столкновений. Результаты сравнения этого значения с экспериментальным покажут степень достоверности сделанного предположения. [c.125]

    Если первоначальное число активных центров поверхности представить в виде 3° = (А-З) + (3) = onst, то константу равновесия можно выразить через величину 0 — долю занятых активных центров поверхности  [c.537]

    Возможно ие все атомы поверхности в равной степени активны и только некоторые нз них, так называемые активные центры, обладают способностью образовывать активные проме- жуточные соединения. Число же активных центров может зависеть от способа приготовления катализатора. Если это так, то предэкспоиепциальный множитель уравнения (XII, 58) непосредственно связан с числом активных центров гетерогенного катализатора. [c.309]

    Эта зависимость тем более удивительна, что, казалось бы, никакой связи между величинами С и быть не должно. Ведь Е связано с энергетической природой активного центра, а С, с точностью до множителя пропорциональности, есть число активных центров на единице поверхности катализатора. До сих пор не дано полного теоретического обоснования этой интересной опытной закономерности . Пожалуй, наиболее правдоподобно звучит объяснение, данное Швабом на основании теории активных центров. Если катализ осуществляют только определенные активные центры, обладающие различным энергетическим потенциалом (т. е. катализ идет на наборе активных центров с разными энергиями активации на них), то по статистически-термо-дннамическим соображениям число их должно увеличиваться с уменьшением энергетического потенциала. На поверхности катализатора, обладающего по условиям приготовления центрами высокой активности, только эти центры и будут участвовать в процессе на поверхности же катализатора, пе имеющего центров высокой активности, катализ поведут менее активные, но более многочисленные центры. Следовательно, чем больше величина Е для данного катализатора из серии катализаторов с разной активностью центров, тем большего значения С следует ожидать. Поскольку между числом центров и их энергий наиболее вероятна экспоненциальная зависимость, качественно объяснимо и эмпирическое уравнение (XIII, 6). [c.336]

    Характерно, что после обработки паром активность алюмомагнийсиликатных катализаторов значительно возрастает, причем наибольшее возрастание наблюдается у катализаторов, прошедших стадию синерезиса при 25—30° С, а наименьшее — у катализаторов, прошедших синерезис при 65° С. При обработке паром химическая природа алюмомагнийсиликатных соединений не изменяется. Увеличение же удельной активности после такой обработки объясняется повышением числа активных центров на единице поверхности катализатора (в результате сокращения поверхности за счет сжатия неактивных участков). При этом общая поверхность катализатора сокращается в большей степени, чем увеличивается удельная активность. [c.95]

    Молекулы для того, чтобы их столкйовение было эф -фективным, т. е. привело бы к образованию нового вещества. С ростом температуры число активных молекул быстро увеличивается, что и приводит к резкому возрастанию скорости реакции. [c.92]

    Для простых цеией (неразветвленн1)1х), в которых каждая активная частица дает начало одной цеии, скорость реакции может быть представлена как произведение длины цепн v на число активных частиц Яц, зарождающихся в ед[1нице объема за единицу времени, г, е. [c.352]


Смотреть страницы где упоминается термин Числа активности: [c.125]    [c.197]    [c.197]    [c.427]    [c.538]    [c.551]    [c.224]    [c.140]    [c.247]    [c.260]    [c.211]    [c.126]    [c.127]    [c.171]    [c.337]    [c.340]    [c.95]   
Курс физической химии Том 1 Издание 2 (1969) -- [ c.126 , c.130 , c.196 , c.199 ]

Курс физической химии Том 1 Издание 2 (копия) (1970) -- [ c.126 , c.130 , c.196 , c.199 ]




ПОИСК





Смотрите так же термины и статьи:

Активная поверхность насадок числа точек подачи орошения

Активность числа гидратации

Активность, единицы число на молекулу фермент

Активность, подвижность и числа переноса ионов

Алюминий, гидроокись число активных центров на поверхност

Вырождение и число колебаний, активных

Диффузия и число активных соударений фермента с субстратом

Задание 43. Знакомство с поверхностно-активными веществами и определение числа Авогадро. — О. С. Зайцев

Изменение числа активных мест поверхности катализатора

Использование соображений симметрии для определения числа линий, активных в инфракрасном спектре и спектре комбинационного рассеяния

Катионная полимеризация определение числа активных

Комбинационного рассеяния спектроскопия число активных колебаний

Коэффициент активности вычисление из данных по числам

Коэффициент также Константа, Постоянная, Число активности

Метод э. д. с при определении коэффициентов активности, чисел переноса, произведений растворимости и констант равновесия ионных реакций

Определение коэффициентов активности электролитов по Определение чисел переноса по величинам

Определение средней продолжительности жизни из числа активных центров

Определение числа активных атомов водорода в органиче- j ском соединении (Метод Чугаева—Церевитинова—ТерентьеСинтетические полимеры и поликонденсаты

Определение числа активных атомов водорода в органическом соединении (Метод Чугаева—Церевитинова—Терентьева)

Определение числа активных центров

Определение числа активных центров и констант скоростей элементарных актов

Определение числа активных центров кинетическим методом

Постоянные, Числа активности

Регуляция Na, К-АТФазной активности ионами натрия и каОпределение числа Na-центров Na, К-АТФазы

Скорость химических реакций расчет через число активных

Цепи активные, общее число

Числа переноса и активность

Число активных соударений

Число активных центров

Число центров роста, их активность и степень использования переходного металла в гетерогенных катализаторах

Электропроводность. Числа переноса. Коэффициенты активности



© 2025 chem21.info Реклама на сайте