Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электродвижущая сила электрохимического элемента

    Под потенциометрией понимается ряд методов анализа и определения физико-химических характеристик электролитов и химических реакций, основанных на измерении электродных потенциалов и электродвижущих сил гальванических элементов. Потенциометрические измерения являются наиболее надежными при изучении констант равновесия электродных реакций, термодинамических характеристик реакций, протекающих в растворах, определении растворимости солей, коэффициентов активности ионов, pH растворов. Особенно общирное применение нашли потенциометрические измерения именно при определении pH, которое является важнейшей характеристикой жидких систем. Для этого используют электрохимическую цепь, составленную из электрода сравнения и индикаторного электрода, потенциал которого зависит от концентрации (активности) ионов Н (так называемые электроды с водородной функцией). К таким электродам относятся, например, рассмотренные ранее водородный и стеклянный электроды. [c.264]


    Электродвижущая сила электрохимического элемента 232 [c.381]

    Электродвижущая сила электрохимического элемента слагается из разностей потенциалов между различными проводниками разомкнутой цепи в местах их соприкосновения (эти разности потенциалов называются также скачками потенциала). При соприкосновении проводников первого рода возникает скачок потенциала, называемый гальвани-потенциалом (см. стр. 503). [c.490]

    На поверхности контакта двух проводящих фаз электрохимической системы (различной химической природы, агрегатного состояния и типа проводимости) наблюдаются скачки потенциала. Сумма скачков потенциала на всех границах раздела фаз равновесной электрохимической системы называется электродвижущей силой (ЭДС) элемента или цепи. Она может быть непосредственно измерена как разность потенциалов фаз, находящихся на концах цепи. Для электрохимических систем характерны три основные типа скачков потенциала скачки потенциала металл — раствор, раствор — раствор и металл — металл. [c.280]

    А Электродвижущая сила электрохимической цепи считается положительной, если катионы при работе цепи проходят в растворе от электрода, записанного в схеме цепи слева, по направлению к электроду, записанному справа, и в этом же направлении движутся во внешней цепи электроны. При этом правый электрод заряжен положительно относительно левого. Если схема цепи записана так, что движение катионов в электролите и электронов во внешней цепи происходит справа налево, то э. д. с. такой цепи отрицательна. Выполняя это условие, можно легко найти суммарную э.д.с. цепи из нескольких элементов. [c.522]

    Электродвижущая сила коррозионного элемента пропорциональна уменьшению свободной энергии системы в процессе коррозии. Электрохимическая коррозия термодинамически возможна при условии к.обр— а.обр>0 или к,обр> а,обр, что следует из соотношения АР = = —пЕР, где а/ —изменение свободной энергии, и — число электронов, участвующих в реакции, Р — число Фарадея. = ,обр—-Еа.обр — э. д. с. коррозионного элемента, к.обр— равновесный потенциал катодного процесса, а,обр — равновесный потенциал анодного процесса. [c.4]

    Дж. Гиббс также заложил основы термодинамики электрохимических процессов. Он показал, что измерение электродвижущих сил гальванических элементов предоставляет нам уникальную возможность непосредственного экспериментального определения энергии Гиббса, а с помощью ее температурной зависимости — изменений энтропии, энтальпии, теплоемкости и других термодинамических функций процесса, протекающего в этом элементе. [c.317]


    Чтобы измерить равновесную (обратимую) величину электродвижущей силы электрохимического элемента, необходимо. [c.523]

    ГЛАВА XIX ОБЩИЕ СВЕДЕНИЯ 1. Электрохимические элементы. Электродвижущая сила [c.517]

    Наряду с этими методами давно уже разрабатывается другая группа электрометрических методов. Речь идет о потенциометрических методах, основанных на измерении электродвижущей силы электрохимических элементов, собранных соответствующим образом. [c.10]

    Для измерения равновесной (обратимой) величины электродвижущей силы электрохимического элемента необходимо, чтобы процесс совершался бесконечно медленно, т. е. чтобы элемент работал при бесконечно малой силе тока. Это условие выполняется в компенсационном методе, который основан на том, что элемент включается последовательно против внешней разности потенциалов и [c.493]

    Это очень важное уравнение, как мы увидим в следующих главах. АН и АЗ можно определять прямыми калориметрическими измерениями, а затем рассчитывать АО. Изменение изобарного потенциала используется в расчетах электродвижущих сил электрохимических элементов и констант равновесия химических реакций. [c.123]

    Электродвижущая сила гальванического элемента, в котором протекает подобного рода обменная реакция, в первую очередь определяется разностью нормальных потенциалов металлов, из которых состоят его электроды. Чем дальше в электрохимическом ряде напряжений находятся друг от друга оба металла, те.-- больше э. д. с. [c.84]

    Основной причиной электрохимической коррозии является термодинамическая неустойчивость металла в данном электролите, величина которой определяется величиной стандартного электродного потенциала. Как правило, чем более отрицательное значение потенциала, тем менее термодинамически устойчив данный металл. Поскольку экспериментально и теоретически до сих пор не удается установить абсолютные значения потенциалов, то их определяют по отношению к стандартному водородному электроду, потенциал которого условно принимается равным нулю во всех средах и при всех температурах. Электродвижущую силу гальванического элемента, состоящего из стандартного водородного электрода и исследуемого электрода в растворе электролита, называют электродным потенциалом. Помимо водородного электрода, в качестве электродов сравнения могут быть использованы другие электроды, на поверхности которых в растворе протекают обратимые электрохимические реакции с постоянным значением электродного потенциала по отношению к водородному электроду (кислородный, каломельный, хлоросеребряный, медно-сульфатный и др.). [c.15]

    Целый ряд процессов можно провести практически обратимо в лабораторных условиях. Обратимо можно испарить жидкость, как описано в следующем разделе. Электрохимический элемент будет разряжаться обратимо, если приложенная внешняя разность потенциалов будет все время лишь на бесконечно малую величину отличаться от электродвижущей силы самого элемента. [c.23]

    Наиболее широко для измерения электродвижущих сил гальванических элементов в компенсационных схемах в качестве эталона применяется элемент Вестона, который представляет собой следующую электрохимическую цепь  [c.378]

    Электрохимический ряд напряжений. Электродные потенциалы или электродвижущие силы эдс) элементов измеряются компенса- [c.33]

    Электродвижущая сила гальванического элемента, в котором протекает подобного рода обменная реакция, в первую очередь определяется разностью нормальных потенциалов металлов, из которых состоят его электроды. Чем дальше в электрохимическом ряде напряжений находятся друг от друга оба металла, тем больше э.д. с. Цинк в паре с медью образует гальванический элемент, э. д. с. которого в стандартных условиях немногим больше вольта, если же медь [c.81]

    До сих пор работа гальванических элементов рассматривалась в изотермических условиях. Между тем во многих случаях приходится принимать во внимание те изменения, каким электродвижущая сила гальванических элементов подвергается в зависимости от изменения температуры. Как будет показано далее, этот вопрос непосредственно связан с более общим соотношением, существующим между максимальной полезной работой гальванического элемента и тепловым эффектом протекающей в нем электрохимической реакции. [c.89]

    Таким образом, электродным потенциалом называют э.д.с. элемента, составленного из данного электрода и стандартного водородного электрода. Электродвижущая сила электрохимической цепи считается положительной, если при работе цепи катионы переходят из записанного в схеме цепи левого электрода к правому и в этом же направлении движутся во внешней цепи электроны. При этом правый электрод относительно левого заряжен положительно. Если катионы в электролите и электроны во внешней цепи движутся справа налево, э.д.с. такой цепи считается отрицательной. Следует иметь в виду, что плюс и минус э.д.с. указывают лишь на направление тока и являются чисто формальной характеристикой, принятой для единообразного способа выражения знака электродного потенциала. [c.161]


    Экспериментальные значения lg Кр для рассматриваемой реакции были получены не только по равновесным составам газа, но и электрохимическим методом. Как известно, электродвижущая сила (Е) элемента связана с изменением изобарного потенциала простым соотношением  [c.124]

    Важнейшей количественной характеристикой электрохимического элемента или цепи элементов является электродвижущая сила (э. я. с., обозначаемая в дальнейшем через Е), которая равна разности потенциалов правильно разомкнутого элемента, т. е. разности потенциалов между концами проводников первого рода из одного и того же материала, присоединенных к конечным электродам элемента (цепи). Знак э.д.с. совпадает со знаком суммарной разности потенциалов цепи или противоположен ему, в зависимости от принятой системы знаков. [c.518]

    Основные электрохимические явления — это процессы, протекающие на границах различных фаз. Работа электрохимического элемента и его электродвижущая сила — это лишь суммарное проявление совокупности процессов, совершающихся на границах фаз, поэтому изучению молекулярных процессов на границах фаз, являющихся причиной возникновения на этих границах скачков потенциалов и, следовательно э.д.с., в теоретической электрохимии уделяется основное внимание. Однако отдельные скачки потенциала обычно нельзя измерить измеряются лишь электродвижущие силы. [c.519]

    Сточки зрения электрохимического механизма коррозии, термодинамическая возможность процесса может быть описана электродвижущей силой (э. д. с.) коррозионных элементов, суммарное действие которых и есть коррозионный процесс. [c.30]

    Одна из важнейших характеристик гальванического элемента -его электродвижущая сила А = ок - 1/оа. где оа потенциалы катода и анода. Например, для элемента, составленного из медного и ци кового электродов, погруженных в нормальные растворы собственных ионов, пользуясь электрохимическим рядом напряжений (см. табл. 3.1), определим Д = 1/си Щ.п +0,337 - (-0,763) = 1,1 В. Полученное значение совпадает с измеренным для соответствующего гальванического элемента. [c.36]

    Тогда при коротком замыкании электродов с помощью проводника первого рода из-за разности величин электродных потенциалов ячейка работает самопроизвольно - в цепи течет ток, т.е. выделяется электрическая энергия. Это происходит до тех пор, пока потенциалы электродов не достигнут одинаковых значений. Поэтому такие элементы могут служить источником постоянного тока (например, сухие батареи, кислотные и щелочные аккумуляторы и др.). Подобные электрохимические ячейки принято называть гальваническими элементами, разность потенциалов электродов в которых представляет собой электродвижущую силу (э.д.с.) элемента. [c.125]

    Отсюда видно, что при ai=an электродвижущая сила, определяемая выражением (XV.74) равна нулю. Тогда гальванические элементы называют электрохимическими цепями без переноса. [c.434]

    Всякий источник электрической энергии — элемент и потребитель энергии — ванна, как это следует из выражения (У.13), характеризуются разностью электродных потенциалов и внутренним сопротивлением. Поэтому процессы зарядки и разрядки аккумулятора нельзя считать обратимыми чем больший ток проходит через электрохимическую систему, тем больше теряется напряжение. Э. д. с. элемента и напряжение на клеммах электролизера зависят также от материала электродов и от состава и концентрации потенциалобразующих ионов в растворе. Например, не только абсолютная величина, но и знак э. д. с. цепи, составленной из меди (положительного полюса) и цинка (отрицательного полюса), изменяется на обратный, если в системе (V. ) медный электрод погрузить вместо раствора сернокислой меди в раствор цианистой меди. Таким образом, напряжение и электродвижущая сила электрохимических систем существенно зависят от величины накладываемого или отбираемого тока, а также от состава и концентрации реагирующих на границе фаз электрод — электролит веп1,естБ. [c.145]

    Измеряемая электродвижущая сила элемента равна разности потенциалов исследуемого электрода и электрода сравнения. Если в качестве электрода сравнения взят стандартный водородный электрод, потенциал которого принят за нуль, то потенциал исследуемого электрода будет равен электродвижущей силе составленного элемента. Однако несмотря на простоту вычисления электродных потенциалов таким способом, стандартный водородный электрод редко применяют в качестве электрода сравнения. Для его изготовления необходимы специальные ус- ловия — химически чистый водород, строго определенное парциальное давление, постоянная скорость подачи водорода на поверхность платины. Все это делает водородный электрод громоздким и неудобным для электрохимических измерений. Поэтому ча ще применяют более простые электроды сравненияз каломельный и хлорсеребряный, обладающие устойчивым потенциалом. [c.141]

    Уравнение (3-62) описывает реакцию, протекающую на одном электроде. Электрохимический элемент имеет два электрода, и полная реакция является суммой двух полуреакций. Электродный потенциал данной полуреакцин определяется путем измерения электродвижущей силы, создаваемой элементом, в котором одна из полуреакций протекает на стандартном электроде с известным потенциалом. На рис. 3-3 схематически изображена экспериментальная система для измерения электродного потенциала. Стандартный водородный электрод представляет собой платиновый стержень, заключенный в стеклянную трубку, через которую подается газообразный водород под давлением 1 атм. Электрод погружен в раствор, содержащий ионы водорода с единично активностью (ан =1). Потенциал этого электрода условно принят за нуль. На практике в качестве стандартного электрода чаще всего используют каломельный или какой-либо другой электрод с точно известным, постоянным потенциалом. Цепь между растворами, куда погружены электроды, замыкается с помощью мостика, заполненного электролитом. В исследуемом полуэлементе на поверхности другого электрода (чаще всего платинового) протекает реакция, описываемая уравнением (3-62). Разность потенциалов между двумя электродами регулируется потенциометром. Вычитая из зтсй разности потенциалов потенциал стандартного электрода, получают электродный потенциал исследуемой окислительно-восстановительной пары. Важно, чтобы интересующая нас электродная реакция была полностью обратима. Передвигая движок потенциометра таким образом, чтобы электродвижущая сила (э. д. с.) исследуемой системы была точно уравновешена внешним [c.229]

    Существуют два типа жидкостных соединений, с которыми обычнО приходится иметь дело при электрохимических исследованиях гомоионные соединения, образующиеся при соприкосновении растворов, различающихся только концентрацией ионов, и гетероионные соединения, возникающие при соприкосновении растворов, содержащих различные ионы в одинаковых или разных концентрациях. Как было показано в 6, в случае гомоион-ных соединений диффузионные потенциалы представляют собой величины, поддающиеся точному термодинамическому определению [уравнение (66)], и поэтому результаты, полученные помощью элементов, содержащих такие соединения, можно использовать для термодинамических расчетов (гл. XI, 9, и гл. XII, 1). В настоящем параграфе будет рассмотрено применение элементов с гетероионными жидкостными соединениями < Измерение электродвижущих сил этих элементов находит широкое применение при различных способах определения pH и может при соблюдении некоторых особых условий давать результаты, имеюнще термодинамический смысл. Эти условия носят экспериментальный характер и применяются для устранения диффузионных потенциалов, а не для вычисления их величии. [c.302]

    Электродвижущая сила одного электрохимического элемента является величиной положительной, так как она соответствует всегда определенному самопроизвольно протекающему процессу, дающему положительную работу. Обратному процессу, который не может протекать самостоятельно, отвечала бы отрицательная э. д. с. При составлении цепи электрохимических элементов процесс в одном из элементов можно направить так, чтобы он сопровождался затратой работы извне (несамопроизвольный процесс), используя для этого работу другого элемента цепи, в котором идет самопроизвольный процесс. Очевидно, суммарная э. д. с. любой электрохимической цепи равна разности электродвижущих сил отдельных элементов, т. е. алгебраической сумме положительных и отрицательных величин. Поэтому очень важно при записи схемы электрохимической цепи и подсчете йеличины э. д. с., соответствующей этой цепи, учитывать знаки э. д. с., пользуясь принятыми правилами. [c.492]

    Электрохимические методы электродвижущие силы гальванических элементов (химических, концентрационных и цепей Якоби — Даниеля) напряжение разложения вольтаметрия амперометрия кулонометрия хронопотенциометрия полярография. [c.37]

    В первой главе рассмотрены некоторые понятия и результаты неравновесной термодинамики, необходимые в анализе электрохимических систем. Получены уравнения для возникновения энтропии в прерывной системе и гетерогенной реакции. Поскольку при исследовании гальванических элементов прежде всего вычлсляют электродвижущие силы (напряжение элемента в состоянии равновесия), то в этой главе сформулированы условия равновесия в электрохимических системах. [c.5]

    Электродвижущая сила одного электрохимического элемента является величино]" положительной, так как она соответствует всегда определенному самопроизвольно протекающему процессу, длюп1ему положительную работу. Обратному процессу, который не может протекать самостоятельно, отвечала бы отрица- [c.521]

    Мысль об электрохимическом характере растворения металлов была высказана Каяндером в 1880 г. В 1881 г. Слугинов сделал первую попытку количественно описать это явление, связав скорость коррозии с электродвижущей силой и сопротивлением местных элементов. [c.639]

    В шементах с устройством, подобным изображенному на рис. 19-4.6, можно использовать и другие комбинации металлов. Если в качестве пары метал Г10В взяты никель и медь, никель окисляется на аноде, ионы восстанавливаются на катоде, и элемент имеет напряжение, или электродвижущую силу (э.д.с.), 0,57 В. Если в элементе используются цинк и никель, цинк окисляется, а ионы N1 восстанавливаются, и э.д.с. элемента равна 0,53 В (при условии, что ионы металлов имеют 1 М концентрации). Следует отметить, что э.д.с. электрохимических элементов обладают таким же свойством аддитивности, как и реакции, например  [c.166]


Смотреть страницы где упоминается термин Электродвижущая сила электрохимического элемента: [c.522]    [c.96]    [c.334]    [c.101]    [c.541]    [c.302]    [c.619]   
Смотреть главы в:

Руководство по физической химии -> Электродвижущая сила электрохимического элемента




ПОИСК





Смотрите так же термины и статьи:

Электродвижущая сила ЭДС

Электрохимический элемент



© 2025 chem21.info Реклама на сайте