Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

оксиды, получение применение

    Большое практическое применение имеет оксид алюминия. Из него изготавливают весьма огнеупорную и химически стойкую керамику. Разработана технология получения прозрачной корундовой керамики. В больших количествах выращивают монокристаллы чистого АЬОз (лейкосапфир) и АЬОз с добавками примесей (искусственные рубины и сапфиры). Из них делают лазеры и подшипники для точных механизмов. [c.343]


    Поэтому водород применяют в металлургии для восстановления некоторых цветных металлов из их оксидов. Главное применение водород находит в химической промышленности для синтеза хлороводорода, для синтеза аммиака, идущего в свою очередь на производство азотной кислоты и азотных удобрений, для получения метилового спирта (см. разд. 29.10) и других органических соединений. Он используется для гидрогенизации жиров (см. разд. 29.14), угля и нефти. При гидрогенизации угля и нефти бедные водородом низкосортные виды топлива превращаются в высококачественные. [c.473]

    Лабораторные работы, представленные в этой главе, посвящены практическому ознакомлению с методами получения металлов восстановлением их оксидов при помощи твердых (углерод) и газообразных восстановителей (водород, оксид углерода II). Все процессы, происходящие при восстановлении металлов из их оксидов, требуют применения высоких температур, что осложняет постановку работ в лабораторных условиях. Все работы, рассмотренные в данном разделе, позволяют количественно определить выход металла в зависимости от условий восстановления оксида. [c.67]

    Недостаток гидразина — его стоимость, в несколько раз превышающая стоимость конкурирующих с ним топлив. Однако это относится в первую очередь к предполагаемой стоимости больших количеств гидразина. Чтобы исключить этот недостаток, необходимо снизить цену гидразина в 5 раз. Однако маловероятно, чтобы эта причина была столь существенной. Современное производство гидразина основано на получении водного раствора его оксида. При применении непосредственно водного раствора удешевление гидразина стало бы реальным [9]. [c.508]

    В СССР первые установки по каталитическому восстановлению оксидов азота введены в эксплуатацию в 1965 г. На многих химических предприятиях была реализована схема каталитического восстановления оксидов азота с применением природного газа, разработанная Государственным научно-исследовательским и проектным институтом азотной промышленности и продуктов органического синтеза (ГИАП). Катализатором служит палладий, нанесенный на активный оксид алюминия. Тепло, выделяющееся в процессе восстановления, можно использовать в газовых турбинах для получения дополнительной энергии, что улучшает экономические показатели процесса очистки. [c.65]

    В работе [90] на примере гидрирования циклопропана исследована удельная каталитическая активность ряда нанесенных и ненанесенных металлических катализаторов и определена активная поверхность металла. В качестве катализаторов использовали Ni, Со, Мо, Rh, Pt и Pd, нанесенные на А Оа, кизельгур и активированный уголь, а также Pt- и Pd-черни. Активность и поверхность катализаторов определяли методом импульсного отравления поверхностных активных центров оксидом углерода. Установлено, что наиболее активными и селективными являются Ni-катализаторы, восстановленные при 360 °С. Показано, что в присутствии Ni, Со, Мо и Rh проходит как гидрогенолиз циклопропана, так и его гидрокрекинг на Pt и Pd крекинг не протекает. По общей активности исследованные катализаторы располагаются в ряд Rh > Ni > Pd > Pt > Мо > Со, по активности в реакции гидрокрекинга получен иной ряд Ni > Со > Мо > Rh > Pt, Pd. Эти результаты показывают, что примененный метод с использованием гидрогенолиза циклопропана в качестве модельной реакции дает возможность быстро и достаточно точно определять удельную активность металлсодержащих катализаторов и поверхность металла. Полученные результаты хорошо согласуются с данными, найденными классическими методами. [c.104]


    Одним из важных параметров регенерации является соотношение концентраций оксидов углерода в продуктах сгорания. Процесс горения кокса должен сопровождаться тщательным автоматическим контролем, обеспечивающим отсутствие свободного кислорода над слоем катализатора, так как догорание оксида углерода в зоне отстоя наносит большой ущерб внутренним устройствам регенератора, в первую очередь циклонам. Потенциальное тепло сгорания оксида углерода до диоксида иногда используется в специальных котлах-утилизаторах с получением пара высокого давления. Однако эти котлы дороги и не всегда рентабельны. Другим мероприятием, способствующим обезвреживанию продуктов сгорания кокса, является применение специального катализатора для полного догорания СО до СО2 в самом регенераторе. [c.57]

    Необходимость применения металлотермического восстаповления галогенидов гри получении Т1, 2г, НГ обусловлена очень большой прочностью их оксидов, нитридов, карбидов. [c.503]

    Водород используют в химической промышленности для производства аммиака NH3, метанола СНзОН и других спиртов, альдегидов, кетонов для гидрогенизации твердого и тяжелого жидкого топлива, жиров и различных органических соединений, для си)1теза хлороводорода НС1 для гидроочистки продуктов переработки нефти при сварке и резке ме-таллов горячим кислородно-водородным пламенем (температура до 2800 °С), а также при атомарно-водородной сварке (температура до 4000 °С). В металлургии водород применяют для восстановления металлов из их оксидов (получение молибдена, вольфрама и других металлов). Очень важное применение в атомной энергетике нашли изотопы водорода — дейтерий и тритий. [c.419]

    Кокс ТКК может использоваться как энергетическое топливо или подвергаться газификации с получением низкокалорийного топливного газа или технологических газов (водорода или смеси водорода и оксида углерода). В последние годы за рубежом получают применение процессы ТКК, совмещенные с газификацией (па])Окислородовоздушной) порошкообразного кокса, получившие название "Флек — сикокинг". [c.78]

    Ранее провддились исследования. по использованию не1 от ор111х катализатрров, содержащих оксиды металлов пережженной валентности, для интенсификации процессов пиролиза углеводородного, сырья е получением низкомолекулярных олефинов. Прказана высокая эффективность применения указанных катализаторов для каталитического пиролиза различных нефтяных фракций в среде водяного пара [1.50, 1.51]. При каталитическом пиролизе тяжелых нефтяных фракций (вакуумных газойлей, мазутов), кроме получения низкомолекулярных олефинов, исследовалась возможность получения легких дистиллятных продуктов — компонентов моторных топлив или нефтехимического сырья (ароматических углеводородов) [1.52, 1.53]. [c.18]

    Но при низких температурах скорость реакции настолько мала, что потребовалось бы слишком много времени для получения значительных количеств аммиака. Ускорения процесса удалось добиться применением катализаторов. Из различных исследованных веществ наилучшим т т ш 500 600 700 оказалось определенным образом пригй-Температура,°с товленное пористое железо, содержащее тгебольшие количества оксидов алюминия, калия, кальция и кремния. [c.406]

    П р II м с р. Для иллюстрации применения метода нечетких множеств для предсказания активности исследуемого катализатора была выбрана реакция окисления СО на оксидах металлов. Этот выбор сделан в связи с тем, что для этой реакции имеется достаточно наденшый экспериментальный материал, приведенный в работе [2], что позволяет оценить достоверность резуль-тат1.в, полученных с помощью предложенного метода. [c.111]

    Эффективное применение топлива предполагает сочетание рационального метода сжигания того или иного вида топлива с максимальным использованием полученного теила. К.п.д. печей во многом определяется потерями тепла с уходящими топочными газами и химическим недожогом. Потери тепла с газами зависят от их температуры, коэффициента избытка воздуха в топке и присосов холодного воздуха по газовому тракту. Потери тепла от химического недожога наблюдаются ири наличии в уходящих газах несгоревшего в тоике метана, водорода и оксида углерода. Основная нрпчнпа химического недожога топлива — недостаточное количество воздуха, подаваемого в горелки. [c.112]

    Достаточно высокая полнота сжигания вредных примесей в факельных системах достигается при температуре сгорания более 1000 °С. Это вызывает некоторые сложности необходимость применения для факельной трубы жаропрочных материалов значительный дополнительный расход топливного газа для нагрева сбросных газов, содержащих преобладающее количество пнертных компонентов и очень малую долю вредных веществ обеспечение полноты сгорания самого топливного газа и т. д. Поэтому в настоящее время проводятся интенсивные исследования по разработке эффективных и экономичных способов каталитического окисления вредных примесей в сбросных газах различных процессов. Уже имеются действующие системы каталитического окисления фенола на некоторых установках получения фенола и ацетона, окисления вредных примесей в газах битумных установок. Значительное количество оксида углерода выбрасывается в атмосферу с газами регенерации установок каталитического крекинга, и целесообразность внедрения на них каталитического дожига СО в СОг очевидна. [c.308]



Смотреть страницы где упоминается термин оксиды, получение применение: [c.468]    [c.619]    [c.619]    [c.619]   
Общая органическая химия Т.9 (1985) -- [ c.459 ]




ПОИСК





Смотрите так же термины и статьи:

оксиды применение



© 2025 chem21.info Реклама на сайте