Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Каталитические системы механизм действия

    Промышленные катализаторы большей частью представляют собой многокомпонентные и многофазные системы. К такого рода составам пришли эмпирически, часто в результате длительного поиска и последующего усовершенствования катализаторов. Одним из оснований для создания сложных катализаторов были наблюдения, что каталитическая активность двух пли нескольких соединений часто не аддитивна, а принимает экстремальные значения. Теоретические основы механизма действия и подбора сложных катализаторов серьезно стали разрабатываться сравнительно недавно и иока еще полностью не ясны. Здесь будут рассмотрены некоторые вопросы теории сложных катализаторов, непосредственно связанные с общей теорией катализа. [c.44]


    Для определения механизма автоколебаний скорости в открытой гетерогенной каталитической системе необходимо установить 1) соотношение скорости лимитирующей стадии транспорта реагирующих веществ со скоростью реакции 2) механизм действия обратной связи [c.316]

    В гетерогенных каталитических системах обратная связь выражается во влиянии результатов протекания реакции на ее скорость. Для рассматриваемых систем первого класса можно указать несколько возможных механизмов действия обратной связи, объясняющих возникновение автоколебаний скорости при протекании реакции на элементе поверхности катализатора. [c.317]

    Ферменты — это очень сложные соединения, и до сих пор детально изучены механизмы действия лишь некоторых из них. Именно поэтому возникает необходимость в модельных системах. К функциональным группам полипептидных цепей, участвующим обычно в каталитических процессах, относятся имидазольный остаток, алифатические и ароматические гидроксильные группы, карбоксильные группы, сульфгидрильные группы и аминогруппы. [c.264]

    После освоения в промышленности первых, сравнительно малоактивных катализаторов, начались работы по их модификации, подбору более эффективных систем, упрощению схем производства ПЭНД. Этому способствовали теоретические исследования кинетики и механизма действия катализаторов Циглера — Натта. Появились десятки тысяч патентов на различные каталитические системы, отличаюш,иеся по составу от катализаторов Циглера — Натта, но действующие по тому же механизму. [c.7]

    Многие переходные металлы и их комплексы обладают каталитической активностью и широко применяются в промышленных каталитических системах, например, оксид ванадия(У) при окислении диоксида серы для получения серной кислоты, мелкодисперсное железо, оксид железа(Ш) - при синтезе аммиака. Особенно активны в этом отношении переходные элементы второго и третьего переходных рядов и, в частности, платиновые металлы. Так, мелкодисперсная платина и ее сплавы используются при окислении аммиака, металлорганические соединения родия и иридия - в разнообразных реакциях органического синтеза. В гл. 11 мы отмечали, что среди разнообразных механизмов действия этих и других катализаторов можно выделить несколько стадий, присущих каждому каталитическому процессу. Попытаемся теперь проследить за действием металлокомплексного катализатора на основных стадиях процесса  [c.373]


    Из цитохромов группы (Ь) наиболее изучен цитохром Р-450. Эта цито-хромоксидаза содержит Fe(III) и катализирует реакции типа гидроксилирования С-Н-связей (рис. 28.9). Чтобы иметь представление о примерном механизме действия цитохрома Р-450, приведем его каталитический цикл (см. рис. 28.9). В биохимии, в отличие от органической химии, из-за сложности и многостадийности биохимических процессов вместо системы взаимосвязанных уравнений ступенчатых химических реакций используются каталитические циклы. 0ш1 более наглядны, реагент вводится в цикл с помощью фигурной стрелки. Аналог№шо удаляются из цикла некоторые продукты реакции. [c.748]

    Выяснение действия такой многофазной системы, состояш,ей из шпинелей окислов металлов (часто в виде твердых растворов), на скорости различных реакций представляет сложную задачу. Дальнейшие экспериментальные исследования связи каталитической активности и электронных характеристик смешанных катализаторов позволят выяснить механизм действия таких систем на каталитические процессы. [c.224]

    Необходимы дальнейшие исследования для окончательного выяснения механизма действия этой интересной каталитической системы. [c.114]

    В основных чертах механизм действия твердых кислот и оснований должен быть аналогичен механизму действия кислот и оснований в гомогенных жидкофазных системах. Для частного случая минеральных кислот, адсорбированных на твердой поверхности, это было показано Гольданским, Семеновым и Чирковым [59]. Для собственно твердых кислот, как показано рядом авторов [15, 60, 61] на примере алюмосиликатных катализаторов, каталитическая активность находится в прямой зависимости от количества находящегося в катализаторах обменивающегося водорода. Аналогия в строении и действии гомогенных и гетерогенных кислых катализаторов указывает на возможность протекания реакций по ионному механизму с ионом протона в качестве катализатора. Реакции на алюмосиликатных и подобных катализаторах, видимо, проходят через стадию присоединения протона с образованием иона карбония [62, 63]. Например, механизм реакции гидратации этилена следующий  [c.54]

    В заключение следует остановиться на прогнозировании сложных многофункциональных катализаторов и каталитических систем. Применение таких систем находит все большее применение в промышленности, поскольку дает возможность осуществлять в одну стадию сложные синтезы и повысить селективность процессов. Поскольку подбор катализаторов для простых реакций проще, чем для сложных, и часто такие катализаторы уже известны, наиболее просто синтезировать каталитические системы механическим смещением, исходя из принципа автономности каталитического действия, т. е. подбирать такие компоненты смеси, которые в условиях сложного процесса не изменяли бы каталитических свойств в отношении простых составляющих реакций и не оказывали бы вредного действия на реакции, которые катализируются другими компонентами смеси. Если такие компоненты системы найдены изложенными выше методами, то вопросы эффективности ее применения, состава системы и его изменений по координате реакции могут решаться количественно, исходя из механизма и кинетики процесса, математическими методами оптимизации. [c.7]

    Эти же авторы, используя информацию о механизме действия ферментов различного типа, создали комбинированные каталитические системы, сочетающие в себе свойства различных катализаторов и активаторов и действующие на нескольких различных стадиях сложного химического процесса. Такие комбинированные системы оказались намного более эффективными катализаторами, чем их отдельные компоненты [99—104]. [c.263]

    При анализе механизма действия ферментов, в частности при выяснении причин высокого их каталитического эффекта и специфичности, весьма важно исследование относительного значения энтальпии и энтропии, поскольку эти термодинамические параметры определяются конкретными межмолекулярными силами образования и распада фермент-субстратных комплексов. При этом величина АЯ говорит об изменении потенциальной энергии системы при образовании и разрыве химических связей в ходе образования комплекса Е8. Величина А5 является мерой изменения числа степеней свободы системы и, следовательно, связана со структурными (пространственными) изменениями в ходе реакции. Три крайних случая приводит Лейдлер для характеристики относительной роли АЯ и А5 в образовании фермент-субстратного комплекса (табл. 9). [c.131]

    Каталитические системы в процессах Дикона и оксихлорирования идентичны, механизмы их действия могут быть различны /I/, Реакции оксихлорирования могут быть заместительного или аддитивного характера и протекать при различных тетературах /2/. [c.7]


    Имеется целый рад белковых токсинов бактериального и растительного происхождения, которые являются мощными ингибиторами эукариотической (животной) белоксинтезирующей системы. Эти токсины блокируют элонгационную фазу трансляции. Все они обладают каталитическим (энзиматическим) механизмом действия. Мишенью их действия оказалась стадия транслокации элонгационного цикла эукариотической рибосомы. Наиболее изученным примером является дифтерийный токсин. [c.214]

    Из сказанного ясно, насколько важно знать строение и механизм действия биологических катализаторов. Этим вопросам посвящен раздел науки — биокаталиэ. Знание механизма действия ферментов позволяет, моделируя биологические системы, совершенствовать и обычные неорганические катализаторы. Кроме того, каталитическая активность ферментов широко используется в промышленности в разнообразных бродильных процессах. [c.274]

    В главных чертах механизм действия твердых кислот и оснований должен быть аналогичен механизму действия кислот и оснований в гомогенных жидкофазных системах. Для частного случая минеральных кислот, адсорбированных на твердой поверхности, это было показано Гольданским, Семеновым и Чирковым [48]. Для свбственно твердых кислот, как показано рядом авторов [49— 51] на примере реакции крекинга на алюмосиликатных катализаторах, каталитическая активность находится в прямой зависимости от количества, находящегося в катализаторах обменивающегося водорода. Аналогия в строеппи и действии гомогенных и гетерогенных кислых катализаторов указывает на возможность протекания реакций по ионному механизму с ионом протона в качестве катализа- [c.36]

    Противоионы, подобно соответствующим ионам в гомогенной среде, катализируют многочисленные и разнообразные реакции органического синтеза [233]. Находясь в ионите в сольватирован-ном состоянии, они аналогичны свободным ионам в обычных растворах электролитов. Поэтому каталитические реакции под действием ионов в растворе и протизоионов ионита протекают по одному и тому же механизму. Отношение константы скорости ре- акции в гетерогенной системе Лгет к константе скорости реакции в гомогенной системе йгом при эквивалентной концентрации катализирующего иона называется эффективностью ионита Ли [237]  [c.175]

    Использование корреляционных уравнений Гаымета — Тафта применительно к полимеризации эпоксидов приводит в случае катионных систем к значениям р << О, характерным для электрофильных реакций, п кр >0 — в случае анионных иа рис. 83 даны примеры тагшх соотношений [22]. Все остальное многообразие процессов, где перекрывается действие многих факторов, занимает здесь промежуточное положение. Однако, как видно из рисунка, при соиолимеризации эпоксидов под действием типичной координа-Ционно-аниоиной каталитической системы (С2Н5) А1 — НоО (1 1) электрофильное влияние выражено даже более резко, чем в катионной полимеризации, — значение более отрицательно. Это указывает На более сильную координацию эпоксидов с атомом металла, чем с ионом карбония прп оксониевом механизме. [c.223]

    Сравнительно недавно были сформулированы Н. А. Васюниной А. А. Баландиным и Р. Л. Слуцкиным положения о системе катализаторов, действующих при гидрогенолизе углеводов и много атомных спиртов [52, 53], — о гомогенном катализаторе разрыва связи С—С (крекирующем агенте) и гетерогенном катализатор гидрогенизации. В то же время было открыто каталитическое дей ствие в этой реакции растворимых соединений металлов, наприме сульфата железа, хелатного комплекса железа с сахарными кисло тами, сульфата цинка и др., названных гомогенными сокатализа торами гидрогеиолиза [54, 55]. Механизм их действия рассмотре в гл. 3 добавление гомогенных сокатализаторов ускоряет гидроге нолиз в 2—3 раза с получением гидрогенизата примерно таког( же состава, как и без их применения. [c.122]

    На стыке молекулярной биологии с физической и физико-органической химией возникла еще одна не менее важная задача — создать сравнительно простые каталитические системы, в которых использовали< ь бы принципы действия активных центров, работающих в ферментах. Подобного рода исследования обогащают физико-органическую химию познанием нетрадиционцых путей (механизмов), позволяющих ускорять или в общем случае регулировать скорости химических реакций. Изучение механизмов молекулярной биологии, в частности движущих сил ферментативного катализа, поможет найти пути создания избирательных химических катализаторов с управляемыми свойствами [7, 8]. В то же время анализ как общих закономерностей, так и различий, наблюдаемых в ферментативных и модельных системах, можно рассматривать как качественно новую ступень углубленного изучения самих ферментов. Иными словами, подобного рода исследования в области молекулярной химической бионики должны способствовать формированию новых взглядов на природу ферментативного катализа. [c.3]

    Исследования механизма полимеризации диенов на циг-леровских каталитических системах, проведенные в последние годы, однозначно указывают на то, что в их составе присутствуют активные центры (АЦ) различного строения, действие которых приводит к тому, что имеется достаточно широкое молекулярно-массовое распределение полидиенов и различная стереорегулярность образующего полимера (1,4-цис, 1-4-транс, 1,2- эвенья). [c.19]

    Ван Рейн и Косси [172] для полимеризации этилена на окиснохромовом катализаторе предложили ионно-координационный механизм, аналогичный механизму полимеризации на каталитической системе на основе Т1С1з. Активной эти авторы считают связь Сг +—С при октаэдрическом строении АЦ. Корреляция между содержанием ионов в катализаторе и его активностью была обнаружена также при изучении изменения общего содержания хрома в катализаторе и варьировании условий его активации [173], по изменению интенсивности сигнала ЭПР и активности катализатора при изменении продолжительности и температуры обработки катализатора растворителем [174], по появлению сигнала ЭПР во время индукционного периода и при активации катализатора в токе воздуха [175], при изучении механизма действия окиснохромовых катализаторов различными методами [176]. [c.160]

    Подробнее остановимся на свойствах цитохрома Р-450 (цитохром типа Ь). Он выделяется в лаборатории из клеток печени, коры надпочечников, бактерий и др. Ферментная система цитохрома Р-450, гидроксилирующая связи С-Н субстратов, содержит три компоненты. Первая - это ассоциат из НАДФ (см. XVI), из цитохрома Р-450 вторая - цитохром Р-450 и третья - это фосфолипиды. Исследователи наиболее глубоко проникли в структуру, функции и механизм действия этой ферментной системы. Однако вопросы механизма активации молекулы О2 этим ферментом не решены. Известно, что при функционировании Р-450 происходит экстракоординация фазу двух лигандов -атома S цистеинового остатка белка и О2. Следует учесть то, что атом серы в тиоспиртах и тиоэфирах является слабым экстралигандом даже для атома железа, имеющего достаточное сродство к S и образующего сульфиды с низким значением произведения растворимости. В отличие от имидазола, атом S, подобно гемоглобину, не обеспечивает прочного связывания О2. Поэтому механизм окислительного воздействия О2 должен быть связан с изменением окислительного состояния железа в цитохроме. На рис. 5.4 приведен каталитический цикл цитохрома Р-450. Координационные взаимодействия на атоме железа (экстракоординация) выступают здесь также четко, как в фотосинтезе и фиксации-переносе О2. [c.290]

    Тот факт, что другая сериновая протеиназа, субтилизин, белок,, не обладающий структурной близостью к группе химотрипсина, содержит, тем не менее, тот же каталитический участок, явился ошеломляющим открытием. Из трехмерной структуры субтили-зина следует, что в последнем также имеется система водородных связей аспарагиновая кислота-32. .. гистидин-64. .. серин-221,. аналогичная найденной в химотрипсине [51] (см. рис. 24.1.14). Этот факт означает, что каталитические механизмы, используемые обоими этими ферментами, также идентичны. Отсюда, безусловно,, следует заключение, что две линии в эволюции ферментов пришли к одному и тому же решению проблемы гидролиза амидной связи. Если это заключение справедливо для сериновых протеиназ, оно может быть справедливо и для протеиназ, в механизмах действия которых участвуют другие аминокислотные остатки, и вообще для ферментов, катализирующих любую данную реакцию. Эти данные, таким образом, могут служить косвенным доказательством нашего предположения о том, что очень большое число-ферментов, участвующих в жизненных процессах, может использовать значительно меньшее число каталитических механизмов. [c.490]

    Роль ионов цинка при восстановлении карбонильных соединений алкогольдепидрогеназой сводится к поляризации карбонильной группы путем координации с металлом и к последующему переносу гидрида от 1,4-ди гидроникотин амидного фрагмента кофермента NADH к углеродному атому карбонильной группы. Следует отметить, что гексахлорацетон, будучи бедным электронами карбонильным соединением, может проявлять лишь минимальную тенденцию к связыванию с ионами металлов. Изучение этой каталитической системы было предпринято с целью получить ответ на единственный вопрос ускоряют ли ионы цинка восстановление неспецифического субстрата — гексахлорацетона, если реакция протекает по механизму, показанному на схеме 9.4 Пример каталитического действия комплекса цинка состава 2 1 (ДНА—ПЦФ—Пи—Zn"—Пи—ПЦФ— ДНА) является пока единственным. Основное же действие ионов цинка в этой системе сводится к образованию инертных [c.245]

    В последние годы в установлении механизмов внутримолекулярных каталитических реакций были достигнуты значительные успехи. Исследования в этой области стимулировались известной гипотезой, согласно которой внутр1имолекулярные реакции моделируют реализующийся в ферментативных системах внутрикомплексный катализ. В этом смысле вклад внутримолекулярного катализа в развитие наших представлений о тонких механизмах действия ферментов трудно переоценить [2]. [c.247]

    Полимеризация ВФ с инициаторами — эфирами пероксидикарбоновых кислот, на каталитических системах типа Циглера—Натта, боралкильных соединений и координационных соединений последних, например, с аммиаком, гидразином, аминами, а также под действием уизлучения протекает по свободнорадикальному механизму при О—50 °С, т. е. при более низкой температуре, чем критическая температура ВФ (54,7 °С), и при низких давлениях 0,1—5,5 МПа (1—55 кгс/см ). [c.73]

    Результаты этих работ трудно объяснить, не установив механизма каталитического действия смешанных контактов, так как в ряде случаев во время катализа изменяется фазовый состав контакта. Например, для смесей NiO + АЬОз и РегОз + dO образуются шпинели п возможно, что с этим связано увеличение поверхности, а также изменение каталитических свойств смесей. По данным Ринекера [315], для смеси СнО + СггОз энергия активации реакции окисления окиси углерода изменяется в зависимости от состава катализаторов (рис. 84). Однако для этой системы также наблюдается образование шпинелей. По Ринекеру [316] возможны два механизма действия смешанных контактов на примере реакции окисления окиси углерода. По первому механизму [c.222]

    Рентгенографический анализ этой системы показал, что по мере возрастания содержания висмута в смеси увеличивается концентрация соединения В12 Об н уменьшается концентрация 0з. Наиболее активные контакты, содержащие 30—40 о атомн. В1, состоят из смеси Bi2W0в + УОз. При монотонном увеличении концентращш В1, Юб в смесп каталитическая активность проходит через максимум (см. рис. 92). Поэтому нельзя считать, что активность смешанных контактов определяется только образованием В12 У0б. Несмотря на неясность механизма действия смешанных катализаторов, экспериментальный материал показывает, что электронные факторы имеют существенное значение в изменениях каталитической активности таких контактов. [c.228]

    Описаны новые многокомпонентные каталитические системы, их структура, методы приготовления и модифицирования. Проведен анализ природы активных форм, образующихся при адсорбции компонентов реакции на поверхности катализатора. Цаны стадийные схемы гетерогеннокаталитических процессов окисления углеводородов и обсуждаются новые представления о механизме этих реакций. Рассмотрены природа активной поверхности катализаторов и пути повышения эффективности их действия на отдельные реакции. Описаны основные кинетические закономерности окисления и окислительного ам-ионолиза олефиновых и ароматических углеводородов. Разобраны закономерности избирательности окислительных процес- ов и приведено описание некоторых промышленных процессов. [c.2]

    Проанализированы и обобщены данные по исследованию структуры и стереорегулирующей способности различных типов активных центров (АЦ) при полимеризации диенов. Большое внимание уделено рассмотрению существующих в литературе механизмов ионно-координационной полимеризации диенов. Приводятся сведения о том, что в этих системах имеется распределение активных центров по их строению, реакционной способности и стереоспецифичности действия. Продемонстрированы возможности методов квантовой химии в исследовании АЦ, получение которых обычными химическими методами невозможно или экспериментально затруднено. На основе квантово-химических исследований показано, что из различных типов активных центров, образование которых возможно при полимеризации бутадиена на ионно-координационных каталитических системах на основе соединений переходного металла, одни типы активных центров (содержащие в координационной сфере переходного металла электроноакцепторные атомы хлора) характеризуются л-аллильным связыванием концевого звена растущей полимерной цепи с атомом лантанида и являются г<ыс-регулирующими. Для других типов АЦ характерны а-алкильное строение и преимущественно транс-стереоспецифичность действия. [c.302]

    Поиск новых высокостереоспецифических катализаторов полимеризации сопряженных диенов и оптимизация действия существующих катализаторов требуют изучения механизма ионно-координационной полимеризации. В свою очередь, механизм ионнокоординационной полимеризации напрямую связан со структурой активных центров (АЦ), действующих в каталитических системах, их геометрическим и электронным строением. [c.303]

    В связи с выяснением механизма роста цепи определенное значение имеет вопрос о природе конфигурационных дефектов в высокостереорегулярных цепях. Можно ожидать, что даже наиболее эффективные каталитические системы не абсолютно стереоспеци-фичны, и поэтому определение природы дефектов цепи важно для изучения механизма действия катализатора. [c.182]

    В предыдущей главе было показано, что присутствие комплексообразующих агентов при полимеризации под влиянием металлорганических соединений вносит существенные изменения в кинетику полимеризации и структуру полимеров. Известны бодее сложные каталитические системы, представляющие собой двух- и трехкомпонентные комплексы, отличающиеся высокой эффективностью действия и стереоспецифичностью — алфиновые катализаторы, катализаторы Циглера—Натта и окисные катализаторы. Общей чертой для них является образование координационных комплексов катализатор—мономер, которое предшествует гетеролптическому разрыву связи в мономере. Подобный механизм может быть распространен и на некоторые другие катализаторы полимеризации. [c.399]

    Первыми комплексами, которые использовали в селективном гомогенном гидрировании, были карбонилы железа, кобальта и никеля. В качестве субстратов применялись полиненасыщенные природные продукты, как, например, соевое и льняное масла. Дальнейший существенный прогресс в этой области связан с открытием каталитической системы на основе пентацианкобальта-та и изучением механизма ее действия. [c.93]

    Кроме того, алюминийалкилы сами по себе являются весьма реакционноспособными соединениями и могут служить исходными полупродуктами для получения ценных органических продуктов, в частности, первичных алифатических спиртов. Поэтому наиболее подробно будут рассматриваться здесь способы получения компонентов каталитических комплексов на основе алкилов алюминия и хлоридов титана. Меньше внимания уделено другим металлорга-иическим комплексным каталитическим системам и совсем не рассматриваются л-аллидьные комплексы переходных металлов. Последние в настоящее время интенсивно изучаются с целью более глубокого проникновения в механизм стереорегулирования в процессе полимеризации диеновых углеводородов. Специальные вопросы их образования, действия и перспектив практического использования должны служить объектом отдельного рассмотрения. [c.6]

    Большое значение для механизма процесса имеет соотношение компонентов каталитической системы — металлалкила и соли металла. Так, Д Алельо - и другие считают, что система Т1С14 — АШз при избытке Т1С14 действует по катионному механизму, а при избытке АЩз — по анионному. [c.140]

    Полимеризация винилхлорида может быть осуществлена под действием одних металлоорганических соединений Например, н-бутиллитий в комплексе с триэтилалюминием катализирует полимеризацию винилхлорида Степень полимеризации поливинилхлорида, полученного в присутствии этого комплекса, меньше, чем при использовании одного н-бутиллития. Полагают, что в этом случае полимеризация протекает но ионному механизму, причем образуется поливинилхлорид, обладающий повышенной кристалличностью по сравнению с обычным поливинилхлоридом. К аналогичным результатам приводит использование каталитической системы, состоящей из н-бутиллития и эфирата трехфто- [c.478]

    Во-первых, они показали плодотворность применения кинетического метода к изучению особенностей протекания химических (главным образом органических) превращений. Так, полученные структурно-кинетические зависимости позволяли в некоторых с.лучаях (с.табый сореагент, однотипная реакция, неизменная среда и температура) предсказывать (по аналогии) поведение органической молекулы в специально подобранной реакционной системе и предвычислять подобным образом скорости реакций. При исследовании влияния растворителя на протекание органических реакций сложились три точки зрения на механизм действия индифферентного растворителя физическая, химическая и каталитическая. Кроме того, было замечено сильное влияние количества растворителя на скорости реакций в растворах. [c.151]

    Процессы жидкофазного окисления таких углеводородов, как пропил- или этилбензол, изопентан или изобутан, с последующими операциями по выделению из реакционной смеси соответствующе го гидропероксида начинают играть все более значимые роли в крупнотоннажных синтезах оксидов олефйнов, фенола, кетонов, спиртов и т. д. [1]. В Промышленности окисление осуществляют некаталитически, иногда применяют каталитические Системы на основе соединений металлов постоянной валентности. Механизм действия этих металлов пока недостаточно изучен, но почти всеми авторами отмечается определенное увеличение селективности по гидропероксиду в их присутствии [2, 3]. [c.46]


Смотреть страницы где упоминается термин Каталитические системы механизм действия: [c.56]    [c.239]    [c.13]    [c.318]    [c.89]    [c.224]    [c.453]    [c.550]   
Прогресс полимерной химии (1965) -- [ c.39 ]




ПОИСК





Смотрите так же термины и статьи:

Механизм действия



© 2025 chem21.info Реклама на сайте