Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Связь между ориентацией полимера и свойствами волокон

    В электроизоляционной технике широко применяются материалы с листовыми волокнистыми наполнителями, в качестве которых используются бумага и ткань. Полимер, являющийся связующим, обеспечивает требуемые диэлектрические свойства, а сопротивление механической нагрузке в основном оказывает волокнистый наполнитель. В таких материалах в результате взаимного влияния связующего и волокнистого наполнителя наблюдается повышение прочности, которое объясняется ориентацией макромолекул связующего в направлении волокон и образованием тонких прослоек между ними. Повышение прочности волокнистого наполнителя и материала в целом обусловлено тем, что вследствие хорошей адгезии между полимером и волокнами при растяжении материала возникают силы, перпендикулярные действию растягивающего усилия. Эти силы препятствуют утонению волокон, предшествующему их разрыву, вследствие чего для разрушения волокон в материале требуется более высокое напряжение, чем для их свободного разрыва. Значения разрушающего напряжения при растяжении полимеров и слоистых материалов на их основе приведены ниже  [c.70]


    Способность к образованию фибрилл является, повидимому, общим свойством линейных полимеров и объясняется, вероятно, различной прочностью связей между макромолекулами или группами макромолекул. Толщина фибрилл определяется числом макромолекул, которые прочно связаны друг с другом в процессе биохимического синтеза (для природного волокна), формования и ориентации (для искусственного и синтетического волокна). При увеличении среднего расстояния между макромолекулами, вызванном набуханием волокна, волокна в первую очередь распадаются по тем межмолекулярным плоскостям, в которых отдельные группы макромолекул наименее прочно связаны друг с другом. Процесс набухания и приводит к расщеплению волокон на фибриллы. [c.125]

    Если точка плавления кристаллитов полимера низка, то это, естественно, ограничивает его практическое применение в случаях же высокой точки плавления могут возникнуть трудности при превращении полимера в волокно. Таким образом, область практического применения ограничивается полимерами, свойства которых занимают промежуточное положение между этими крайними случаями. Процесс плавления выяснен недостаточно полно даже для низкомолекулярных веществ простого строения тем не менее, выбирая более эмпирический путь, можно установить некоторые общие закономерности и при отсутствии фундаментальной теории. В результате исследовательских работ по получению новых полимеров накопилось много данных о влиянии структуры на точку плавления кристаллитов (глава XII) сейчас уже выяснен ряд вопросов о влиянии межмолекулярных сил, гибкости молекул, их симметрии и плотности упаковки на этот параметр. Это позволяет удовлетворительно объяснить, каким образом молекулярные характеристики влияют на точку плавления. Влияние структуры на точку плавления некоторых рядов незамещенных алифатических полимеров (рис. 3) подчиняется простой закономерности [6]. Температура перехода второго рода имеет важное значение в связи с процессом вытягивания, при котором происходит ориентация [c.16]

    Волокнообразующими свойствами обладают полимеры с линейной структурой, т. е. с очень длинными (вытянутыми) макромолекулами, при взаимном упорядочении которых возникают меж-молекулярные связи, препятствующие скольжению их и повышающие сопротивление одноосной деформации волокна, что способствует его более глубокой ориентации. До появления изотактического полипропилена считалось, что текстильные волокна с высокими физико-механическими свойствами можно получить только в том случае, если в линейных макромолекулах имеются группы, которые отличаются способностью к ассоциации. Высокую разрывную прочность найлона объясняли образованием межмолекулярных водородных мостиков. В отсутствие их, например в случае полиэтилентерефталатных и полиакрилонитрильных волокон, межмолекулярные силы возникают между полярными группами соседних макроцепей. [c.229]


    Волокнистые композиты отличаются от однородных полимеров и наполненных порошками пластиков тем, что они состоят из двух или более непрерывных по крайней мере в одном направлении фаз — сравнительно малопрочной непрерывной матрицы, заполняющей пространство между армирующими волокнами, и высокопрочных и высокомодульных волокон, которые могут быть ориентированными или хаотично расположенными. Роль матрицы сводится к передаче нагрузки между волокнами, которые воспринимают основную долю общей нагрузки. Возможность выбирать различные волокна, их ориентацию и различные типы связующих позволяет создавать разнообразные материалы и в щироких пределах изменять их характеристики. По прочностным и другим свойствам многие армированные пластики превосходят любой из входящих в их состав компонентов илн резко отличаются от них. Основным преимуществом композитов, сделавших их одним из наиболее перспективных новых материалов, является возможность достижения высокой прочности на единицу массы. [c.207]

    Одновременно будут рассмотрены вопросы физико-химии процессов формования волокон, включая перевод полимера в вязкотекучее состояние и подготовку к формованию закономерности образования жидкой нити при экструзии расплава или раствора через тонкие отверстия условия стабильности формующейся нити при воздействии аэро- и гидродинамических полей в прядильных шахтах и ваннах механизм отверждения жидкой нити при формовании волокон из растворов и расплавов фазовы( превращения и физические переходы полимера, протекающие при формовании волокон и при их дальнейшей обработке связь между ориентацией полимера и свойствами волокон процессы, протекающие при ориента ционной вытяжке волокна. [c.16]

    Процесс деформации сопровождается не только ориентацией сегментов макромолекул пли кристаллитов в направлении приложенных усилий, но и изменением межмолекулярных взаимодействий, что отражается на физико-механических свойствах полимера. Согласно Липатову [50], на начальных стадиях деформации происходит возрастание объема растянутого полимера, которое указывает на разрыв в результате деформации части связей между молекулами полимера. Такой разрыв приводит к увеличению среднего расстояния между звеньями соседних полимерных цепей. В работе Уэйтхема и Герроу [53] было показано, что при растяжении целлюлозных волокон до удлинения 5 /о энтропия возрастает, что связано с разрушением исходной структуры волокна до того, как начинается собственно ориентация. Аналогичные представления возникли при исследовании ориентации полиамидных волокон Б зависимости от степени деформации [54—56]. На определенной стадии деформации авторы наблюдали появление такой структурной модификации, которая свидетельствует о разрушении кристаллитов. Дальнейшая деформация приводит к выпрямлению участков цепей и нх ориентации в направлении растяжения. Этот процесс создает предпосылки для установления нового порядка в расположении цепей, которое при благоприятных условиях может привести к равновесию, характеризующемуся повыиленнем плотности упаковки. [c.77]

    Помимо вытягивания, связанного с десольватацией, обычно предусматривается преднамеренная вытяжка, которая осуществляется путем увеличения скорости приема волокна по сравнению со скоростью выдавливания нитей. Оба процесса вытягивания оказывают совместное влияние на увеличение ориентации молекул и агрегатов полимера в направлении оси волокон. Насколько эффективна для осуществлегшя ориентации молекул та или иная степень вытяжки, зависит от нескольких факторов. Факторами, благоприятствующими ориентации, являются высокая степень полимеризации, которая, так же как и выпрямление полимерных молекул [42], обусловливает большую величину отношения длины к ширине [43] и образование поперечных связей [44]. Было предложено несколько теоретических зависимостей для оценки влияния вытягивания сильно набухших гелей на конечную ориентацию полимерных звеньев, но экспериментальные результаты обнаруживают более или менее заметные отклонения от теоретических предположений [45]. Это можно объяснить тем, что выбранные для теоретического рассмотрения модели были слишком простыми. Большие успехи были достигнуты при интерпретации изменений свойств растянутого каучука [47], так как в этом случае возможно толкование этих изменений при помощи статистики свернутых и выпрямленных цепных молекул. Кроме того, в структуре волокна имеются агрегаты молекул кристаллического или квазикристаллического типа. Большинство попыток объяснить связь между вытягиванием и ориентацией в волокнах основывалось на предположении о том, что эти агрегаты являются структурными единицами, причем некристаллические области рассматривались просто как своеобразные шарнирные соединения [45]. Это также слишком простой механизм, но дальнейшая разработка вопроса задерживается из-за отсутствия точных знаний об изменениях в некристаллических областях, происходящих при вытягивании волокна. [c.355]


    При ориентации макромолекул всегда усиливается различие свойств полимера по разным направлениям. Волокна, например, обладают значительно большей разрывной прочностью в продольном направлении, чем в поперечном, что проявляется в легкой рас-щепляемости их на отдельные волоконца. Объясняется это наличием в полимерах таких двух резко различных видов взаимодействия между атомами, как прочные химические связи, направленные вдоль цепи и разрушающиеся только при действии высоких [c.465]

    Механические свойства СВАМ зависят главным образом от вида связующего, толщины элементарного стекловолокна, соотношения шолимера и наполнителя, расположения волокон в прессуемом пакете. Исследования свидетельствуют о том, что оптимальное содержание стекла в СВАМ должно составлять примерно 65% (по весу). Несмотря на то, что стеклянные волокна значительно прочнее, чем связующие, увеличение содержания наполнителя сверх оптимального приводит к снижению прочности Материала. Это объясняется тем, что при большем количестве стекла не образуется сплошной пленки полимера между стеклянными волокнами, в результате чего сцепление последних со связующим нарушается, а следовательно, снижается прочность материала в целом. При указанном выше соотношении стекла и связующего наибольшей прочностью обладает СВАМ, изготовленный из волокон диаметром 14—16 мк. Путе.м изменения взаимного расположения отдельных листов стеклошпона в пакете до прессования можно в широких пределах изменять механические свойства СВАМ и получать мате риал с различными заранее установленными прочностными характеристиками. Самые высокие прочностные показатели имеет СВАМ, в котором стеклянные волокна уложены в одном направлении. При такой ориентации волокон предел прочности при растяжении стеклопластика достигает 9500 кГ1см . [c.51]


Смотреть страницы где упоминается термин Связь между ориентацией полимера и свойствами волокон: [c.93]    [c.316]   
Смотреть главы в:

Физико-химические основы производства искусственных и синтетических волокон -> Связь между ориентацией полимера и свойствами волокон




ПОИСК





Смотрите так же термины и статьи:

Ориентация в полимерах

Ориентация волокна

Ориентация полимера в волокне

Свойства волокон связь с ориентацией полимера



© 2025 chem21.info Реклама на сайте