Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свойства волокон связь с ориентацией полимера

    Волокнистые композиты отличаются от однородных полимеров и наполненных порошками пластиков тем, что они состоят из двух или более непрерывных по крайней мере в одном направлении фаз — сравнительно малопрочной непрерывной матрицы, заполняющей пространство между армирующими волокнами, и высокопрочных и высокомодульных волокон, которые могут быть ориентированными или хаотично расположенными. Роль матрицы сводится к передаче нагрузки между волокнами, которые воспринимают основную долю общей нагрузки. Возможность выбирать различные волокна, их ориентацию и различные типы связующих позволяет создавать разнообразные материалы и в щироких пределах изменять их характеристики. По прочностным и другим свойствам многие армированные пластики превосходят любой из входящих в их состав компонентов илн резко отличаются от них. Основным преимуществом композитов, сделавших их одним из наиболее перспективных новых материалов, является возможность достижения высокой прочности на единицу массы. [c.207]


    Волокнообразующими свойствами обладают полимеры с линейной структурой, т. е. с очень длинными (вытянутыми) макромолекулами, при взаимном упорядочении которых возникают меж-молекулярные связи, препятствующие скольжению их и повышающие сопротивление одноосной деформации волокна, что способствует его более глубокой ориентации. До появления изотактического полипропилена считалось, что текстильные волокна с высокими физико-механическими свойствами можно получить только в том случае, если в линейных макромолекулах имеются группы, которые отличаются способностью к ассоциации. Высокую разрывную прочность найлона объясняли образованием межмолекулярных водородных мостиков. В отсутствие их, например в случае полиэтилентерефталатных и полиакрилонитрильных волокон, межмолекулярные силы возникают между полярными группами соседних макроцепей. [c.229]

    Изменение свойств волокон при формовании определяется рядом факторов, и особенно ориентацией полимера в волокне. В связи с этим особый интерес представляет сопоставление свойств изотропных полимерных [c.292]

    Механические свойства студней представляют боль-шой интерес по двум причинам. Во-первых, студнеобразное состояние системы в процессе переработки полимера является промежуточным или даже конечным состоянием. Поэтому необходимо знать такие механические характеристики студней, как прочность при сжатии и растяжении, деформационные свойства, а также модули сдвига и растяжения. В некоторых случаях, особенна при формовании волокон из растворов полимеров, необходимо знать и составляющие суммарной деформации образующегося студня, поскольку это связано с возможностью ориентации полимера в волокне. [c.121]

    В ориентированном кристаллическом полимере (например, волокне) вдоль оси ориентации чередуются кристаллические и аморфные области. Такое чередование характерно для многих (но не всех) полимерных волокон. Приложение механической нагрузки к этой своеобразной конструкции вызывает деформацию фибрилл, в первую очередь, в аморфных областях Вполне вероятно, что именно в них скорость протекания элементарных актов разрушения (разрывов химических связей) будет наибольшей, и поэтому аморфные области формируют прочностные свойства волокна в целом. В связи с этим необходимо знать строение аморфных областей в кристаллическом полимере. Примечательно, что степень ориентации именно в этих областях, а не в кристаллических, тесно связана с прочностными свойствами некоторых волокон [c.382]


    Из данных таблицы видно, что волокна, вытянутые в присутствии растворителя, характеризуются более высокими физи-ко-механическими свойствами по сравнению с волокнами, не содержащими растворителя. Это, по-видимому, связано с тем, что в присутствии растворителя повышается структурная ориентация полимера. [c.172]

    Вопросам ориентации кристаллических полимеров посвящено много работ, что связано в первую очередь с широким использованием вытяжки кристаллических полимеров в производстве синтетического волокна. Известно, что необходимые физико-механические свойства синтетических волокон получают только после их предварительного вытягивания. [c.103]

    Одновременно будут рассмотрены вопросы физико-химии процессов формования волокон, включая перевод полимера в вязкотекучее состояние и подготовку к формованию закономерности образования жидкой нити при экструзии расплава или раствора через тонкие отверстия условия стабильности формующейся нити при воздействии аэро- и гидродинамических полей в прядильных шахтах и ваннах механизм отверждения жидкой нити при формовании волокон из растворов и расплавов фазовы( превращения и физические переходы полимера, протекающие при формовании волокон и при их дальнейшей обработке связь между ориентацией полимера и свойствами волокон процессы, протекающие при ориента ционной вытяжке волокна. [c.16]

    Аналогично полимерам, полученным прядением из расплава, механические свойства целлюлозного волокна сильно зависят от степени молекулярной ориентации. Но если в полимерах, полученных прядением из расплава, эта ориентация возникает при вытяжке, то в случае целлюлозы ориентация и формование конечной структуры волокон непосредственно связаны с самим процессом химической регенерации, причем связь эта довольно сложна. Для разъяснения остановимся подробнее на процессе регенерации. Раствор вискозы экструдируют через фильеру непосредственно в ванну с кислотой. При этом происходят следующие два процесса. Во-первых, ксантогенат целлюлозы, немедленно выпадающий из раствора, образует сильно набухший гель молочного цвета, содержащий большое количество воды. Во-вто-рых, скоагулированный ксантогенат под влиянием серной кислоты медленно разлагается с образованием целлюлозы. В ходе этого процесса вода диффундирует из [c.167]

    В электроизоляционной технике широко применяются материалы с листовыми волокнистыми наполнителями, в качестве которых используются бумага и ткань. Полимер, являющийся связующим, обеспечивает требуемые диэлектрические свойства, а сопротивление механической нагрузке в основном оказывает волокнистый наполнитель. В таких материалах в результате взаимного влияния связующего и волокнистого наполнителя наблюдается повышение прочности, которое объясняется ориентацией макромолекул связующего в направлении волокон и образованием тонких прослоек между ними. Повышение прочности волокнистого наполнителя и материала в целом обусловлено тем, что вследствие хорошей адгезии между полимером и волокнами при растяжении материала возникают силы, перпендикулярные действию растягивающего усилия. Эти силы препятствуют утонению волокон, предшествующему их разрыву, вследствие чего для разрушения волокон в материале требуется более высокое напряжение, чем для их свободного разрыва. Значения разрушающего напряжения при растяжении полимеров и слоистых материалов на их основе приведены ниже  [c.70]

    Способность к образованию фибрилл является, повидимому, общим свойством линейных полимеров и объясняется, вероятно, различной прочностью связей между макромолекулами или группами макромолекул. Толщина фибрилл определяется числом макромолекул, которые прочно связаны друг с другом в процессе биохимического синтеза (для природного волокна), формования и ориентации (для искусственного и синтетического волокна). При увеличении среднего расстояния между макромолекулами, вызванном набуханием волокна, волокна в первую очередь распадаются по тем межмолекулярным плоскостям, в которых отдельные группы макромолекул наименее прочно связаны друг с другом. Процесс набухания и приводит к расщеплению волокон на фибриллы. [c.125]

    В настоящей работе на бикомпонентных моноволокнах изучалось влияние условий формования, степени ориентации при вытягивании и кристаллизации на усилия сцепления компонентов на основе полиэтилентерефталата и поликапроамида. Выбор указанных полимеров не случаен, поскольку волокна на их основе обладают ценным комплексом свойств. Однако получение бикомпонентных волокон из несовместимых полимеров, какими, по-видимому, являются полиэтилентерефталат и поликапроамид, представляет определенные трудности из-за недостаточной прочности сцепления компонентов . Поэтому авторы применили известный способ для увеличения связи полимеров, взяв в качестве одного компонента полиэтилен-терефталат, а в качестве другого — смесь поликапроамида с 10 вес. % полиэфира. [c.95]


    Изучая упругие свойства стекол выше температуры стеклования, Г. М. Бартенев [17, 204] и А. С. Еремеева [205, 206] приходят к выводу, что в области стеклования стекла обладают, кроме упругих, и неупругими деформациями. Так как высокоэластические деформации стекол в этой области значительно (в сотни раз) превышают упругие деформации и стекла, подобно органическим полимерам обнаруживают склонность к вязкому течению, то авторы [204—206] склонны приписать это явления ориентации прочных связей в структуре стекол при их вытягивании в волокна. [c.41]

    Заканчивая рассмотрение практических методов оценки свойств волокон по деформационным кривым, следует привести еще один вид испытаний — определение прочности и удлинения волокон при разрыве в мокром состоянии. О причине снижения прочности волокон из полимеров с гидрофильными группами (ОН-группы в целлюлозных волокнах, СОКН-группировки в цепи макромолекулы полиамидов) при увлажнении уже говорилось в связи с обсуждением вопроса о влиянии ориентации на прочность. Здесь следует лишь обратить внимание на изменение характера деформационной кривой при увлажнении, что продемонстрировано на примере вискозных волокон (рис. 12.18). Как видно из сопоставления кривых 2 и 2, для мокрого волокна очень слабо выражена квазиупругая часть кривой. Низкие начальные модули и большие необратимые удлинения при относительно невысоких нагрузках, обусловлены тем, что увлажненное волокно находится в состоянии, более близком к температуре стеклования, чем сухое волокно, в результате чего предел вынужденной эла- [c.302]

    Главное требование к волокнообразующему полимеру заключается в том, что длина его вытянутой молекулы должна быть не менее 1000А (100 нм), т. е. его молекулярный вес должен быть не ниже 10 000. Эта величина, разумеется, может быть и выше например, молекулярный вес необработанной (не-деструктированной) хлопковой целлюлозы достигает 500000. В случае синтетических волокон молекулярный вес исходного полимера намеренно ограничивают, поскольку прядильный раствор или расплав должен иметь не слишком высокую вязкость. У большинства волокон, сформованных из расплава, молекулярный вес составляет 10 000—20 000. Волокна, получаемые формованием из раствора, могут иметь более высокий молекулярный вес. Для текстильных волокон характерна также определенная степень кристалличности и (или) ориентации молекул вдоль оси волокна. Эти свойства, присущие природным волокнам, придаются искусственным и синтетическим волокнам в процессе их формования, вытягивания и термической обработки. Точность соблюдения параметров этих процессов оказывает существенное влияние на физико-механические и отчасти на химические свойства готового волокна. В свою очередь, регулярная структура волокна возможна лишь при определенной степени регулярности строения макромолекул, достаточной для их плотной упаковки, которая необходима для возникновения сильных меж-цепных взаимодействий (за счет водородных связей, ассоциации диполей или сил вандерваальсова притяжения). Однако при слишком высокой степени крист алличности волокно не только становится очень прочным, но и делается слишком жестким и теряет способность растягиваться в процессе его получения и эксплуатации. Кроме того, такое волокно чрезвычайно трудно окрасить, поскольку реакционноспособные группы почти целиком находятся в неупорядоченных участках. Степень кристалличности наиболее прочных синтетических волокон, по-видимому, не превышает 50—60%. Исключение составляют полиакрилонитрильные волокна, которые обнаруживают мало признаков истинной кристалличности, но вместе с тем обладают высокой однородностью структуры по всему сечению волокна. В неупорядоченных участках силы межцепного взаимодействия [c.284]

    Если точка плавления кристаллитов полимера низка, то это, естественно, ограничивает его практическое применение в случаях же высокой точки плавления могут возникнуть трудности при превращении полимера в волокно. Таким образом, область практического применения ограничивается полимерами, свойства которых занимают промежуточное положение между этими крайними случаями. Процесс плавления выяснен недостаточно полно даже для низкомолекулярных веществ простого строения тем не менее, выбирая более эмпирический путь, можно установить некоторые общие закономерности и при отсутствии фундаментальной теории. В результате исследовательских работ по получению новых полимеров накопилось много данных о влиянии структуры на точку плавления кристаллитов (глава XII) сейчас уже выяснен ряд вопросов о влиянии межмолекулярных сил, гибкости молекул, их симметрии и плотности упаковки на этот параметр. Это позволяет удовлетворительно объяснить, каким образом молекулярные характеристики влияют на точку плавления. Влияние структуры на точку плавления некоторых рядов незамещенных алифатических полимеров (рис. 3) подчиняется простой закономерности [6]. Температура перехода второго рода имеет важное значение в связи с процессом вытягивания, при котором происходит ориентация [c.16]

    Полиамиды используются главным образом для переработки их в волокно. Полиамидные волокна обладают высокой прочностью, обусловленной высокой степенью их кристалличности, молекулярной ориентацией и сильными межмолекулярпыми связями, а наличие аморфных областей придает волокнам гибкость и обратимость вытяжки. Подробный обзор свойств н применения волокон из синтетических полимеров, в том числе полиамидных, и других изделий из этих смол приведен в монографиях [20, 30, 16], в обзорах [17, 18] и других работах [4, 15, 66, 71, 75]. [c.670]

    В связи с этим интересно рассмотреть поведение и съойства нового класса искусственных волокон, так называемых высокомодульных волокон (волокон с высоким модулем упругости во влажном состоянии). Не касаясь деталей формования этих волокон, отметим, что они получаются в условиях, обеспечивающих более высокую ориентацию полимера. Их отличительной. особенностью является сохранение более высоких значений прочности во влажном состоянии и соответственно более высоких начальных модулей упругости (этот модуль измеряется как отношение нагрузки к деформации при заданной — обычно очень малой — деформации при растяжении). Это дает возможность перерабатывать такие волокна в смеси с хлопком и вообще заменять ими хлопок в текстильных изделиях, поскольку по механическим свойствам эти волокна приближаются к хлопковым. Если принять прочность в кондиционном состоянии (65% относительной влажности) обычных вискозных волокон за 100%, то их прочность в мокром состоянии составит 45—55%. В еще большей степени снижается при смачивании этих волокон модуль упругости. Высокомодульные волокна, подвергнутые в условиях формования значительно более высокой ориентационной вытяжке, теряют в мокром состоянии значительно меньшую долю прочности (их прочность снижается лишь до 65— 70% от прочности в кондиционном состоянии). Меньше, чем у обычных вискозных волокон, и снижение модуля упругости в мокром состоянии. [c.156]

    Как было показано выше, модуль упругости волокон значительно возрастает с ориентацией молекулярных цепей вдоль оси волокна. Это объясняется аналогично росту прочности значительным участием сильных химических связей в механизме разрушения. Участие химических связей повышается по мере увеличения ориентации, и в идеально ориентированном состоянии межмолекулярные взаимодействия не оказывают влияния на упругие свойства вдоль оси ориентации. В связи с этим модуль упругости идеаль11о ориентированного волокна должен быть на два порядка выше, чем модуль упругости изотропных полимеров. По этой же причине модуль упругости в направлении, перпендикулярном оси ориентации, уменьшается по мере увеличения степени ориентации. [c.252]

    В связи с этим необходимо рассмотреть ориентацию полимера. Ориентационная вытяжка волокон приводит к повышению их прочности за счет того, что при ориентации повышается число цепей на единицу сечения волокна, подлежащих разрыву. Важно отметить, что ориентация при вязком течении в области повышенных температур вы1ягивания или при переходе от одной кристаллической формы полимера к другой приводит к залечиванию дефектов. Кроме того, ориентация самих дефектов, имеющих асимметричное строение, уменьшает их вредное воздействие на прочностные свойства полимеров поскольку согласно формуле Гриффитса (который предложил теорию прочности материалов, основанную на предположении о разрушении как о процессе развития дефектов) прочность материала определяется отношением длины трещины к радиусу закругления в вершине трещины. Корень квадратный из этой величины назван коэффициентом концентрации напряжений [c.280]

    Процесс деформации сопровождается не только ориентацией сегментов макромолекул пли кристаллитов в направлении приложенных усилий, но и изменением межмолекулярных взаимодействий, что отражается на физико-механических свойствах полимера. Согласно Липатову [50], на начальных стадиях деформации происходит возрастание объема растянутого полимера, которое указывает на разрыв в результате деформации части связей между молекулами полимера. Такой разрыв приводит к увеличению среднего расстояния между звеньями соседних полимерных цепей. В работе Уэйтхема и Герроу [53] было показано, что при растяжении целлюлозных волокон до удлинения 5 /о энтропия возрастает, что связано с разрушением исходной структуры волокна до того, как начинается собственно ориентация. Аналогичные представления возникли при исследовании ориентации полиамидных волокон Б зависимости от степени деформации [54—56]. На определенной стадии деформации авторы наблюдали появление такой структурной модификации, которая свидетельствует о разрушении кристаллитов. Дальнейшая деформация приводит к выпрямлению участков цепей и нх ориентации в направлении растяжения. Этот процесс создает предпосылки для установления нового порядка в расположении цепей, которое при благоприятных условиях может привести к равновесию, характеризующемуся повыиленнем плотности упаковки. [c.77]

    Предполагается [91], что явление спонтанного удлинения полимерного материала связано с переходом макромолекул в аморфных участках в упорядоченное состояние, сопровождающееся доориентацией полимера вдоль направления предварительной вытяжки (оси волокна). Допускается, что этот переход фазовый, однако прямых измерений термодинамических характеристик в области такого перехода практически не проводилось. Естественно ожидать, что процесс самоудлинения (доориентации) может приводить к улучшению физико-ме-ханических свойств волокон. Возможно, что в ряде случаев именно эффект доориентации предопределяет повыщение прочности и модуля упругости волокон в результате термообработки. Об этом свидетельствует тот факт, что, как правило, для волокон, полученных из анизотропных растворов, влияние термообработки не столь существенно, как в случае формования из изотропных растворов. Создается впечатление, что максимальная ориентация материала реализуется уже при течении анизотропных растворов, тогда как для достижения высокой степени молекулярной ориентации волокон, формуемых из изотропных растворов жестко- или нолу-жесткоцепных полимеров, требуется проведение дополнительной обработки. [c.179]

    При ориентации макромолекул всегда усиливается различие свойств полимера по разным направлениям. Волокна, например, обладают значительно большей разрывной прочностью в продольном направлении, чем в поперечном, что проявляется в легкой рас-щепляемости их на отдельные волоконца. Объясняется это наличием в полимерах таких двух резко различных видов взаимодействия между атомами, как прочные химические связи, направленные вдоль цепи и разрушающиеся только при действии высоких [c.465]

    Такое различие в свойствах блочных полимеров и волокон объясняется прежде всего ориентированным состоянием полимера в волокнах. По мере ориентации уменьн1ается и необратимое удлинение при растяжении, которое для высокоориентированных волокон снижается до 5—8%. Вообще решающие успехи в производстве искусственных волокон всегда были связаны с отысканием путей повышения степени ориентации полнмера. [c.283]

    В последние г01ды усилились работы по созданию самосмазывающихся материалов, армирующий каркас которых сформирован из металлического волокна или проволоки различного сечения, а матрица — из полимерного связующего или композиции на ее основе. Как уже отмечалось, свойства материалов этого класса, как правило, определяются свойствами исходных компонентов и продуктами их взаимодействия [18, 19]. Поэтому основными задачами при создании таких материалов является подбор армирующих волокон, связующего, дисперсных наполнителей и разработка способов их соединения. В настоящее время щирокое распростра-иенпе получили способы армирования полимеров путем горячего прессовання, литья под давлением, прокатки, ориентацией в маг-пнтном поле [3]. Успешно решена и задача получения и использования при разработке композиционных материалов металлических и металлизированных углеродных волокон. [c.87]

    П. полимерных материалов тесно связана с их деформационными свойствамп. Разрыв полимеров в большинстве случаев происходит в орпептированном состоянии, полученном либо предварительно (напр,, в В0Л0К1ШСТЫХ материалах), лпбо возникающем в процессе испытания на разрыв. Даже в хрупком состоянии П. полимера может сильно изменяться в зависимости от степени предварительной вытяжки. Предварительно ориентированный полимер представляет собой высокопрочный аш1зо-тропный материал. Основным фактором упрочнения полимера является молекулярная ориентация независимо от того, находятся ли волокна в кристаллическом или аморфном состоянин (см. Механические свойства полимеров). [c.195]

    Механические свойства СВАМ зависят главным образом от вида связующего, толщины элементарного стекловолокна, соотношения шолимера и наполнителя, расположения волокон в прессуемом пакете. Исследования свидетельствуют о том, что оптимальное содержание стекла в СВАМ должно составлять примерно 65% (по весу). Несмотря на то, что стеклянные волокна значительно прочнее, чем связующие, увеличение содержания наполнителя сверх оптимального приводит к снижению прочности Материала. Это объясняется тем, что при большем количестве стекла не образуется сплошной пленки полимера между стеклянными волокнами, в результате чего сцепление последних со связующим нарушается, а следовательно, снижается прочность материала в целом. При указанном выше соотношении стекла и связующего наибольшей прочностью обладает СВАМ, изготовленный из волокон диаметром 14—16 мк. Путе.м изменения взаимного расположения отдельных листов стеклошпона в пакете до прессования можно в широких пределах изменять механические свойства СВАМ и получать мате риал с различными заранее установленными прочностными характеристиками. Самые высокие прочностные показатели имеет СВАМ, в котором стеклянные волокна уложены в одном направлении. При такой ориентации волокон предел прочности при растяжении стеклопластика достигает 9500 кГ1см . [c.51]

    По-видимому, могут иметь место также и другие реакции, но все они приводят к уменьшению в полиамиде числа водородных связей, к снижению плотности упаковки макромолекул, к снижению степени ориентации и образованию поперечных связей. При растяжении такого волокна боковые группы и поперечные связи препятствуют более плотной упаковке макромолекул относительно друг друга. Растянутое волокно находится в напряженном состоянии когда растягивающее усилие снимают, волокно сокращается до исходных размеров иными словами, результате таких обработок волокно приобретает эластичность и каучукоподобные свойства. Работы в этом направлении еще не увенчались созданием промышленного производства эластичного нейлона. Однако описанный здесь эластичный полимер нейлона и ряд аналогичлых ему применяются для нейлонизации тканей (см. стр. 552). [c.295]

    Кордес, Гюнтер, Бюхс и Гёльтнер [25] нашли, что двулучепреломление волокон найлон 6, измеренное компенсационным методом, как для тонких элементарных волокон, так и для толстой щетины обычно положительно и имеет небольшую величину (до - -0,005), что указывает на низкуку степень ориентации обычного тина более высокий показатель преломления вдоль оси волокна свидетельствует о тенденции осей молекул располагаться в этом направлении. Но иногда наблюдается и отрицательное двулучепреломление, указывающее на небольшую степень ориентации в противоположном направлении обычно это имеет место при низкой скорости приема нити из фильеры или может быть вызвано неравномерным натяжением расплава полимера при выходе из фильеры. У щетины двулучепреломление поверхности больше, чем двулучепреломление внутренних слоев. (В той же работе сообщается, что поперечные сечения волокон дают такую же интерференционную картину в сходящемся пучке, как и одиночные двухосные кристаллы, т. е. оптические свойства не имеют цилиндрической симметрии эти явления, по-видимому, связаны сдвижением микротомного ножа и поэтому не могут служить надежным показателем структуры волокна.) Престон [36] также наблюдал поверхностные явления в поперечном сечении невытянутых элементарных нитей найлон 66 двулучепреломление в направлении по касательной положительно (показатель преломления больше для направления поляризации по касательной, чем в радиальном направлении) это позволяет предположить, что зигзагообразные цепи и группы С=0 молекул стремятся расположиться параллельно поверхности волокна, что совпадает с характером текстуры в прессованных и вальцованных пленках [10]. [c.254]

    Помимо вытягивания, связанного с десольватацией, обычно предусматривается преднамеренная вытяжка, которая осуществляется путем увеличения скорости приема волокна по сравнению со скоростью выдавливания нитей. Оба процесса вытягивания оказывают совместное влияние на увеличение ориентации молекул и агрегатов полимера в направлении оси волокон. Насколько эффективна для осуществлегшя ориентации молекул та или иная степень вытяжки, зависит от нескольких факторов. Факторами, благоприятствующими ориентации, являются высокая степень полимеризации, которая, так же как и выпрямление полимерных молекул [42], обусловливает большую величину отношения длины к ширине [43] и образование поперечных связей [44]. Было предложено несколько теоретических зависимостей для оценки влияния вытягивания сильно набухших гелей на конечную ориентацию полимерных звеньев, но экспериментальные результаты обнаруживают более или менее заметные отклонения от теоретических предположений [45]. Это можно объяснить тем, что выбранные для теоретического рассмотрения модели были слишком простыми. Большие успехи были достигнуты при интерпретации изменений свойств растянутого каучука [47], так как в этом случае возможно толкование этих изменений при помощи статистики свернутых и выпрямленных цепных молекул. Кроме того, в структуре волокна имеются агрегаты молекул кристаллического или квазикристаллического типа. Большинство попыток объяснить связь между вытягиванием и ориентацией в волокнах основывалось на предположении о том, что эти агрегаты являются структурными единицами, причем некристаллические области рассматривались просто как своеобразные шарнирные соединения [45]. Это также слишком простой механизм, но дальнейшая разработка вопроса задерживается из-за отсутствия точных знаний об изменениях в некристаллических областях, происходящих при вытягивании волокна. [c.355]


Смотреть страницы где упоминается термин Свойства волокон связь с ориентацией полимера: [c.316]    [c.93]    [c.76]   
Физико-химические основы производства искусственных и синтетических волокон (1972) -- [ c.206 ]




ПОИСК





Смотрите так же термины и статьи:

Ориентация в полимерах

Ориентация волокна

Ориентация полимера в волокне

Ориентация полимера в волокне общая связь со свойствами волоко

Связь между ориентацией полимера и свойствами волокон



© 2025 chem21.info Реклама на сайте