Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электронная плотность различных типов связи

    Еще более широкие возможности открывает варьирование состава минералов в силу их исключительного многообразия. Кварц и силикаты, слагающие подавляющее большинство-пород, содержат в основном связи Si—О и связи катион — кислород атомы алюминия могут быть катионами или заменять Si. Эти связи играют различную роль при разрушении силикатных минералов разных структурных типов [275]. В кварце и каркасных силикатах (полевых шпатах) обязательно рвутся силоксановые связи в цепочечных и ленточных си-ликатах возможно скольжение и разрыв по определенным плоскостям, образованным только связями Ме—О в островных силикатах связи Si—О—Si отсутствуют. Перечисленные связи различаются по геометрическим параметрам (длина, валентные углы), распределению электронной плотности и энергии связи колебания этих величин для отдельных классов силикатов имеют более узкие пределы, [276]. Важно, что во всем диапазоне изменений полярности связей Si—О они остаются существенно ковалентными, несмотря на большую разницу [c.93]


    Интенсивность малоуглового рассеяния возрастает с увеличением различия между электронными плотностями различных типов областей, с которыми связана гетерогенность, например, в набухших полимерах, где интенсивность рассеяния рентгеновских лучей зависит от разности электронных плотностей частиц и растворителя. [c.123]

    Воспользовавшись диаграммами электронной плотности, рассмотрим еще раз различные типы связи в твердых телах. На рис. А.бЗ, а и б приведены диаграммы электронной плотности [c.145]

    Химическая связь возникает благодаря взаимодействию электрических полей, создаваемых электронами и ядрами атомов, участвующих в образовании молекулы или кристалла. Независимо от типов химической связи причина ее образования — одна. Химическая связь образуется, если электроны взаимодействующих атомов получают возможность двигаться одновременно вблизи положительных зарядов нескольких ядер. Задача заключается в том, чтобы достаточно правильно описать главные детали этого движения многих частиц и научиться рассчитывать в различных участках молекулы электронную плотность, обеспечивающую связывание атомов. Оказалось, что получить даже качественно правильные решения уравнения Шредингера удается не всегда. Поэтому в настоящее время применяются для объяснения свойств химической связи разнообразные приближенные теории, часто сильно отличающиеся друг от друга. Из методов квантовой химии наиболее известны два подхода к расчету молекулярных систем — метод валентных связей (метод ВС) и метод молекулярных орбиталей (метод МО). [c.101]

    Полосы поглощения, относящиеся к валентным колебаниям металл— лиганд, лежат в области 100—800 см и мало характерны для различных типов связей. Поэтому основные сведения о структуре комплексов получают анализом положения полос, характерных для лигандов. Лигандные полосы поглощения подтверждают присутствие лиганда в комплексе, а иногда позволяют указать ту его таутомерную форму, которая участвует в комплексообразовании. В результате смещения электронной плотности в лиганде под действием иона металла кратность связей в лиганде изменяется. Это ведет к сдвигу полос валентных колебаний (увеличение кратности связи увеличивает частоту) и позволяет судить о способе присоединения лиганда. Наконец, по расщеплению некоторых полос можно судить о симметрии комплексной частицы и ее фрагментов или установить присутствие неэквивалентно связанных и несвязанных лигандов или функциональных групп. [c.27]


    На рис. 66 представлено распределение электронной плотности, соответствующее различным типам связи, полученное описанным выше способом. Эти связи в значительной степени соответствуют тому, что можно было бы ожидать на основе представлений, которые уже были высказаны о сущности этих типов связи. Приводимые на рисунке [c.337]

    Р и с. 66. Схема распределения электронной плотности для различных типов связи (определяемого рентгенографически). [c.337]

    С помощью метода протонного магнитного резонанса выяснены особенности адсорбции бензола и н-гексана на различных катионзамещенных формах цеолита типа X [287]. Молекулы этих адсорбатов обладают близкими размерами и величинами общей поляризуемости, но сильно отличаются распределением электронной плотности в отдельных связях. Изучена зависимость ширины линии магнитного резонансного поглощения от количества адсорбированного углеводорода (табл. 25). [c.96]

    Способность различных углеводородов к реакциям такого типа с гемолитическим отрывом атомов водорода определяется как полярным эффектом, влияющим на электронную плотность связи С-Н, так и фактором стабилизации образующегося радикала [162]. [c.39]

    Связи в комплексах с лигандами — как с ионами, так и с нейтральными молекулами, — часто прочнее других химических связей. Изображение одних связей в комплексе сплошной чертой, а других — пунктиром или стрелкой, говорит только о происхождении этих связей, а не об истинном состоянии валентных электронов в случае одинаковых лигандов различное изображение связей неверно, а при разных лигандах о расположении образующих связь электронов (точнее — электронной плотности) мало что известно. Поэтому в современных работах предпочитают изображать комплексные связи обычной чертой. В комплексах типа Кислотного синего 23М лигандами являются гидрокси- и азогруппы красителя, также, по-видимому, молекулы воды и гидроксильные ионы (точные аналитические данные в большинстве случаев отсутствуют). При крашении молекулы воды замещаются на КНг-и ОН-группы кератина шерсти и других протеиновых волокон, образуя более прочные, чем вода, связи с хромом. В Кислотном синем 23М во внутренней сфере комплекса (в квадратных скобках) Сг + связан с двумя ионизированными гидроксильными группами азокрасителя 0 в комплексе участвуют, кроме атома азота азосвязи, две нейтральные молекулы воды и один гидроксил-ион краситель содержит еще две группы 80з, поэтому общий заряд внутренней сферы комплекса равен  [c.287]

    Однако под действием некоторых факторов, например образо вания конденсированных колец, различные связи перестают иметь равные электронные плотности и показатели кратности. В конденсированной системе нафталина граничные формулы IV—VI не являются эквивалентными формула IV, состоящая из двух бензольных колец типа Кекуле, характеризуется большим весом, чем две другие формулы, соответствующие менее стабильной о-хиноидной структуре. [c.63]

    При рассмотрении вопросов биосинтеза лигнина особого внимания заслуживают работы Фрейденберга и его сотрудников по получению и исследованию биосинтетического лигнина Многолетние исследования этих ученых, проведенные на высоком теоретическом и экспериментальном уровне, внесли значительный вклад в химию лигнина, дав информацию не только о возможных путях его биосинтеза, но и о строении этого сложного полимерного вещества [106, 107, 270—272, 375] Согласно представлениям Фрейденберга, первая ступень образования макромолекул лигнина - это ферментативная дегидрогенизация /i-оксикоричных спиртов с образованием мезомерной системы Из пяти возможных феноксильных радикалов в биосинтезе лигнина принимают участие фактически только четыре Частота участия в реакциях сочетания различных положений определяется относительной электронной плотностью [376] Квантово-химические расчеты показывают, что все феноксильные радикалы имеют наивысшую я-электронную плотность на атоме кислорода, что благоприятствует образованию связей простого арилового эфира р-О-4 — наиболее часто встречающегося типа связи в хвойных и лиственных лигнинах [c.218]

    Когда электроны атома углерода (или другого атома) находятся на гибридных орбиталях, мы говорим, что атом возбужден или переведен в валентное состояние [379, 259, 244]. Так как имеется большое число различных типов гибридизации, то вполне естественно, что существует много различных валентных состояний. К счастью, энергии, соответствующие этим состояниям (по крайней мере, в случае атома углерода, для которого проводились более детальные расчеты, чем для других атомов), не очень сильно зависят от значений разных коэффициентов смещивания. Для валентных состояний характерно резко направленное распределение плотности вероятности, вследствие чего эти орбитали могут образовывать сильные связи путем [c.221]


    В этой книге, предназначенной прежде всего для студентов, изучающих органическую химию, предпринята попытка сравнительно доступно изложить современное состояние теории органических химических реакций. При этом автор не стремится охватить абсолютно все типы реакций, так как это является предметом современных учебников органической химии предполагается, что читатель уже знаком с этими учебниками. Казалось более целесообразным осветить в первую очередь влияния и взаимодействия, скрывающиеся за отдельными механизмами, причем рассмотреть вопрос под различными углами зрения (субстрат — реагент — растворитель). Прежде всего такого рода знание помогает правильно подобрать условия реакции и вообще планировать практическую работу. Далее, для учащихся особенно важно, чтобы теория помогала обобщить многообразие материала и рассмотреть его с единой точки зрения на наглядных примерах. Так, реакции азометинов, нитрилов, нитро- и нитрозосоединений обычно не относят к карбонильным реакциям, но в этой книге их рассматривают вместе с карбонильными реакциями (реакциями альдегидов, кетонов, карбоновых кислот и их производных). Кроме того, применяя принцип винилогии, здесь же рассматривают присоединение по Михаэлю и нуклеофильное ароматическое замещение. Электрофильное присоединение к олефинам и электрофильное замещение в ароматическом ядре также обсуждаются с общей точки зрения. Что касается других глав, то в них сохранена обычная классификация реакций по типа.м нуклеофильное замещение у насыщенного атома углерода, отщепление, секстетные перегруппировки и радикальные реакции. Первые три главы служат введением в них рассматривается проблема химической связи, распределение электронной плотности в молекуле и общие вопросы течения химических реакций органических соединений. [c.9]

    Для целей систематизации различных видов межмолекулярных взаимодействий с учетом их вкладов в удерживаемые объемы в газовой хроматографии целесообразно их разделить на два типа неспецифические и специфические. Неспецифическое, в основном дисперсионное взаимодействие универсально, оно проявляется между любыми молекулами. Специфическое же взаимодействие, в основном ориентационное, вызывается особенностями локального распределения электронной плотности во взаимодействующих молекулах. Эти особенности связаны с локальным концентрированием отрицательного и положительного зарядов на отдельных связях или звеньях специфически взаимодействующих молекул. Водородная связь представляет собой частный случай таких специфических, но еще межмолекулярных взаимодействий. Такое подразделение взаимодействий в известной степени условно. Однако оно помогаем систематизации разрозненных фактов и позволяет дать им удобную качественную классификацию. [c.86]

    Развивающаяся на основе современной квантовой механики электронная теория позволила глубже подойти к закономерностям взаимного влияния атомов в молекулах. Рассматривая проявление взаимного влияния атомов как результат различных типов смещения электронной плотности межатомных связей, можно объяснить направление многих реакций и превращений молекул. [c.311]

    Опубликовано много новых данных относительно положения полос поглощения связи С=С, находящейся в различном. химическом окружении. В настоящее время можно с большим успехом обсуждать различные факторы, от которых зависит значение соответствующих частот. Однако в данном случае, как теперь установлено, важны как химические, так и физические факторы , поэтому необходимо еще многое сделать, чтобы определить относительное влияние каждого из них. Эти две группы факторов упрощенно характеризуются следующим образом. Химические эффекты возникают в результате изменений распределения электронной плотности вдоль связи, происходящих под влиянием замены одного заместителя на другой. Этим обусловлены изменения в характере связи, которые приводят к изменению силовых постоянных и значений колебательных частот. Однако на величину колебательной частоты могут также влиять массы заместителей, изменения валентных углов и взаимосвязь колебаний. Эти факторы являются чисто физическими и никоим образом не связаны с силовой постоянной связи. Во многих случаях имеют место оба типа эффектов. Например, у сопряженных систем в результате делокализации. п-электронов, силовая постоянная связи уменьшается по сравнению с несопряженными системами Это приводит к смещению поглощения в сторону более низких частот. Однако в сопряженной системе увеличивается также возможность колебательного взаимодействия между двумя С=С-связями, что тоже вызывает изменение частоты, но само по себе еще не приводит к изменению силовых постоянных. [c.28]

    Сопоставление различных экспериментальных данных позволяет предположить, что в сульфоксидах связь сера — кислород >8 = 0 двойная со смещенными к кислороду электронными плотностями. В сульфонах она является семиполярной (полуполярной), относится к донорно-акцепторному типу связей и образуется за счет двух неподеленных пар электронов атома серы, который, отдавая их при окислении кислороду, становится электроположительным, а кислород, принимая эту пару, — электроотрицательным  [c.234]

    Кремний кристаллизуется по типу алмаза [d(SiSi) = 2,35 А, а электронная плотность в середине связи 0,25 е/А ]. Его монокристаллы получают выращиванием в вакууме из расплава (путем медленного вытягивания соприкасающейся с поверхностью жидкости затравки). Таким путем удавалось выращивать монокристаллы диаметром 2,5 см и длиной 24 см. Подобные монокристаллы из очень чистого кремния с соответственно подобранными добавками (111 8 доп. 9) служат для изготовления различных г олупроводниковых устройств (выпрямителей переменного тока и др.). [c.587]

    На рис. 49 показана зависимость содержания стирола в сополимере от содержания его в мономерной смеси и от типа реакции полимеризации для той же системы с теми же инициаторами. Различный ход кривых объясняется тем, что одни и те же структурные особенности по-разному отражаются на способности мономерной молекулы присоединяться к свободному радикалу, аниону или катиону. Так как фенйльная группа притягивает электроны слабее, чем группа — СООСНз, электронная плотность у двойной связи винильной группы стирола больше, нежели у метилметакрилата. По той л е причине электронная плотность на активном конце растущей цепи выше, если там находится стирольный остаток, а не звено метилметакрилата. В связи с тем что частицы с повышенной электронной плотностью стремятся прежде всего реагировать с такими, у которых электронная плотность меньше, радикал со стирольным концевым звеном будет предпочтительно присоединять метилметакрилат, а радикал с остатком метилметакрилата на конце цепи — стирол. Следовательно, в макромолекуле сополимера будет соблюдаться более или менее правильное чередование стирольных и метакрилатных звеньев, что находится в соответствии со [c.200]

    Построена только одна проекция ас) ряда электронной плотности ориентировка молекулы определена на основании близкой аналогии со структурой коронена. Точность 0,02 А. В молекуле имеется 12 различных типов связей С —С длины их приведены на рис. 384. [c.451]

    На рис. 66 представлено распределение электронной плотности, соответствующее различным типам связи, полученное описанным выше способом. Эти схемы в значительной степени соответствуют тому, что можно было бы ожидать на основе представлений, которые уже были высказаны о сущности этих типов связи. Приводимые на рисунке кривые показывают распределение электронной плотности вдоль линии, соединяющей центры ядер. Электронная плотность представлена в плоскости (пренебрегая более тонкими оттенками). Видно, что в случае ионной связи электронная плотность в пространстве между ионами падает почти до нуля и, следовательно, каждый ион владеет своими собственными электронными оболочками и не имеет общих электронов с соседними. То же имеет место в случае вапдерваальсовой связи. Здесь, однако, остается сравнительно широкое свободное пространство между электронными оболочками, в то время как электронные [c.301]

    С другой стороны, именно соединения с пониженной электронной плотностью у двойной связи требуют катализаторов, относящихся ко второй группе. В средней области, помимо обычных радикальных возбудителей, эффективны обе группы стирол, например, может быть полимеризо-ван тремя путями. Различия в реакционной способности двойных связей по отношению к различным системам возбудителей и то обстоятельство, что возбудители первого типа каталитически активны в реакциях Фриделя — Крафтса, протекающих, как известно, через промежуточное образование карбониевых ионов, позволяют полагать, что в данном случае применен катионный механизм инициирования и роста, т. е. растущий конец цепи имеет положительный заряд. С другой стороны, соединения второй группы, такие, например, как трифенилметилиатрий, приводят к образованию анионов карбония, что указывает на анионный механизм полимеризации. Поэтому в отличие от радикальной полимеризации здесь приходится говорить о катионной или, соответственно, анионной полимеризации. Различие этих трех механизмов лучше всего проявляется в составе сополимеров, полученных из одной и той же пары мономеров с применением радикального инициатора в одном случае, хлорного олова — в другом и металлического натрия в жидком аммиаке — в третьем (рис. 19) [1, 2]. Механизм действия катализаторов Циглера до сих пор окончательно не выяснен. [c.292]

    При дальнейшем повышении давления несколько выше 10 ГПа, отмечен еще один переход в модификацию, имеющую простую кубическую структуру с параметром а 0,237 нм и расчетной плотностью 3,83 г/см Исследование черного фосфора нейтронографически показало, что в нем имеются два типа связи ковалентные и ван-дер-ваальсовы. Сжимаемость по. этим связям различна на порядок. Постепенное увеличенне электрической проводимости фосфора при возрастании давления свидетельствует о том, что часть электронов в кристалле становится свободной, как в металлах. [c.154]

    Как показывают расчеты, наибольшими являются обменный (отталкивательный) и электростатический вклады, которые в сильной степени компенсируют друг друга. При этом энергия электростатических взаимодействий существенно отличается от чисто диполь-дипольной, и вклад взаимодействий высших моментов значителен, что обусловлено малым расстоянием между взаимодействующими молекулами. Заметный вклад в общую энергию дает член Епер. зар, обусловленный переносом заряда (перераспределение электронной плотности при образовании водородной связи приводит к уменьшению плотности, хотя и незначительному, на атоме водорода и увеличению ее на атоме V). По соотношению вкладов различных типов взаимодействий в общую энергию комплексы с водородной связью подобны обычным донорно-акцепторным комплексам. [c.125]

    Первое широкое подразделение типов связывания, приведенных в табл. 7.3, можно провести на основе того, происходит и.лн нет обобществление электронов между атомами. В системах без ощутимого перекрывания электронной плотности реализуются следующие взаимодействия ион — пон, ион — диполь, диполь — диполь, ион — наведенный диполь, диполь — наведенный диполь, наведенный диполь — наведенный диполь (вандерваальсовы связи). В системах, в которых электроны обобигествлены между атомами, образуются ковалентные связи с различными степенями делокализации отдельных или всех связывающих электронов, что в пределе приводит к металлической связи. Последняя определяет электронные свойства металлов и иптерметаллическнх соединений. Эти свойства лишь до известной степени характеризуют металлическое состояние. [c.341]

    С помощью простых эмпирических уравнений, базирующихся на огромном экспериментальном материале, можно рассчитать химический сдвиг данного протона. Три такйх уравнения, а также таблицы инкрементов, учитывающих положения алифатических, ароматических и олефиновых протонов, приведены в приложении 4.16.1. На практике, однако, часто нет необходимости прибегать к этим таблицам, поскольку резонансные сигналы протонов разных типов находятся в различных, строго определенных диапазонах спектра (см. рис. 4.43). В общем случае положение сигнала протона зависит от электронной плотности на окружающих его атомах, которая в свою очередь определяется главным образом индукхщонным и резонансным эффектами, передаваемыми через химические связи, и анизотропным эффектом, проявляющимся во взаимодействии непосредственно не связанных атомов (взаимодействие через пространство ). [c.81]

    Наличие в углях разнообразных функциональных групп с участием гетероатомов (О, N. 5) и атомов углерода с различной гибридизацией валентных электронов обусловливает в структуре макромолекул их веществ неравномерность распределения электронной плотности, поэтому большую роль играют эпектронодонорно-акцепторные взаимодействия, создающие водородные связи й валентные мостич ные связи типа эфирных у метиленовых. [c.122]

    Одна из особенностей изоксазольного ядра, отличающая его от других циклических систем и, в частности, от других азолов, — высокая лабильность по отношению к нуклеофильным реагентам [8]. Хотя во всех случаях происходит разрыв связи N—О, образующиеся продукты бывают различного типа и их строение во многом зависит от положения и природы заместителей в цикле. Если положение 3 изоксазольного цикла не замещено, то под влиянием нуклеофильного агента происходит отрыв протона в положении 3, сопровождающийся раскрытием цикла и перераспределением электронной плотности. При этом образуются р-кетонитрилы или продукты их дальнейшего превращения. [c.181]

    Д2 — энергетический интервал между уровнями B2g и Blg и х пропорциональна величине плотности неспаренного х-электрона у ядра металла. Коэффициент х обусловлен тем, что энергия взаимодействия неспаренного спина в -состоянии с ядерным спином пропорциональна электронной плотности -электрона у ядер (для р, , (. ..-электронов электронная плотность у ядер равна нулю). В основном состоянии ионы переходных металлов не имеют неспаренных х-электронов. Однако для того, чтобы объяснить появление сверхтонкой структуры в спектрах ЭПР этих ионов, необходимо предположить [119] наличие небольшой примеси конфигураций типа 35(5 )"45, в которых 5-электрон из заполненных орбит (15, 25, 3 ) промотируется на 45-орбиту. Ван-Виринген показал [146], что для иона Мп + в различных кристаллах х пропорциональна ковалентному характеру связи металл — лиганд. О применении формул (38) будет указано в разделе И1, В. [c.78]

    Как указывалось ранее (см. стр. 93), возможно, что большие ионы, имевэшие электронную оболочку инертного газа с низкой плотностью заряда, как, например, ионы калия или бария, в водном растворе, по-видимому, гидратированы весьма неполно. В противоположность этому ионы лития и кальция, вероятно, способны образовать первую сферу из молекул воды, но эти молекулы воды едва ли связаны направленными силами связи до такой степени, чтобы образовались акво-ионы с химической связью. Однако это, по-видимому, происходит в случае ионов металлов побочных групп и, вероятно, также ионов, имеющих электронную оболочку инертного газа, с наибольшей плотностью заряда. Пока нет точного доказательства этого, но ранее (стр. 80) было отмечено, что ион металла, который образует определенные комплексные ионы с комплексообразующими лигандами, например, с аммиаком, также, вероятно, должен образовывать акво-ионы с химической связью. Случай будет совсем простым, если ион металла имеет постоянное координационное число, например ионы кобальта (П1) и хрома (П1). Более трудная задача возникает в случае иона металла с более чем одним координационным числом. Тогда следует рассмотреть два вопроса, пренебрегая, конечно, любым стериче-ским препятствием со стороны лиганда 1) ведет ли себя ион металла в отношении координационной валентности по-разному относительно различных лигандов 2) является ли способность проявления двух координационных чисел свойством иона металла, обнаруживающимся в присутствии всех лигандов независимо от силы и типа связи В качестве первого примера можно упомянуть ионы кобальта (II) и никеля, которые проявляют исключительно координационное число 6 в соединениях с водой, аммиаком и этилендиамином, но в других случаях (см. стр. 66 и 96), по-видимому, проявляют характеристическое координационное число 4. В качестве второго примера следует указать ионы меди (П), цинка и кадмия, которые, по-видимому, всегда имеют характеристическое координационное число 4, и ионы меди (I), серебра и ртути (И), которые всегда, очевидно, имеют характеристическое координационное число 2. В случае ионов кобальта (II) и никеля, а также ионов железа (II) и марганца (II) (ср. стр. 96) кажется вполне естественным принять, что эти ионы в водном растворе образуют октаэдрически построенные гексакво-ионы. Но что можно сказать о другом классе ионов металлов, особенно интересных [c.106]

    Некоторые из специфических эффектов соседних электронов могут быть деэкранирующими, т. е. стремящимися сдвинуть резонанс в сторону более слабого поля. Такие эффекты никогда не преобладают, и протонные резонансы в молекулах всегда происходят при более сильном поле в сравнении с голыми протонами. Однако деэкранирующие эффекты могут быть очень существенны при определении сравиптельпых положений резонанса протонов с различными типами химической связи. Вследствие этого химический сдвиг не является хорошей мерой электронной плотности около протона. [c.636]

    Вследствие сложности общей проблемы взаимодействий до настоящего времени еще не создано законченной теории межмолекулярных взаимодействий. Несмотря на единство квантовомеханической природы взаимодействий, потенциал взаимодействия обычно приближенно представляется в виде суммы вкладов взаимодействий различных типов, трактуемых как независимые. Это, во-первых, неспецифические молекулярные ван-дер-ваальсовы взаимодействия, в основном дисперсионные. Во-вторых, это специфические взаимодействия, в основном зависящие от локального распределения электронной плотности в молекуле, наличия я-связей, свободных электронных пар. Все это еще молекулярные взаимодействия, при которых полностью или в значительной степени сохраняется химическая индивидуальность взаимодействующих партнеров (сюда относятся сильные электростатические взаимодействия диполей и квадруполей с ионами и другими диполями, водородная связь и другие слабые взаимодействия до-норно-акцепторного типа). В-третьих, это отталкивательные взаимодействия, уравновешивающие молекулярное притяжение на коротких расстояниях. В-четвертых, это различные химические взаимодействия, в частности сильное донорно-акцепторное взаимодействие с полным переносом заряда и взаимодействия с образованием прочных ковалентных связей, когда химическая индивидуальность партнеров теряется. [c.12]

    Полости в центре молекулы циклодекстрина характеризуются высокой электронной плотностью. Эта зона высокой электронной плотности оказывает сложное влияние на различные системы. Пожалуй, наиболее силь-но это влияние сказывается на молекуле йода. Исследования методом дифракции рентгеновских лучей показали, что йод, заключенный в полостп циклодекстрина, представляет собой поли.мер-ную структуру с расстоянием между атомами йода 3,06А нормальное расстояние связи йод—йод равно 2,66А. Эта группа включенных атомов йода соответствует стабилизированному активному состоянию, которое возможно только в клатратных соединениях рассматриваемого типа. Рентгеноструктурный анализ комплексов, образуемых иодом с амилозой, целлюлозой, поливиниловым спиртом, флавонами [41], ку-маринами [43] и другими соединениями, показал, что все они имеют примерно одинаковую структуру. [c.121]

    Отрицательная гидратация и структуроразрушающее влияние некоторых ионов объяснены Энгелом и Хертцем [18] несколько иначе, чем в теории Самойлова. В соответствии с их интерпретацией релаксационных данных, полученных методом ЯМР, и некоторых более ранних результатов, в окружении нейтральных атомов или молекул электронная плотность молекул воды изменена и их водородные связи модифицированы так, что это оказывает на воду структурообразующее влияние вторичная гидратация или образование айсбергов, ср. разд. 1.4.1). Важное следствие этого-состоит в том, что молекулярное движение замедляется и подвижность молекул воды вокруг растворенных нейтральных частиц понижается. Несмотря на то что расположение молекул воды вокруг нейтральных частиц растворенного вещества может быть различным, с достаточной частотой реализуются только наиболее вероятные конфигурации. Сделан теоретический анализ для случая заряженных растворенных частиц. Если заряд мал или частица велика и, таким образом, напряженность электрического поля на периферии иона мала, в окружении частиц растворенного вещества образуется больше конфигураций молекул воды разных типов, характеризующихся значительными отклонениями от наиболее вероятной конфигурации, чем в объеме. Это ведет к возрастанию энтропии и энтальпии и одновременно к увеличению скорости молекулярного движения,, что и приводит к группе явлений, называемых отрицательной гидратацией. Если, однако, на периферии иона напряженность электрического поля велика (заряд иона велик или его размер мал), то упорядочивающее влияние оказы- [c.537]


Смотреть страницы где упоминается термин Электронная плотность различных типов связи: [c.55]    [c.9]    [c.184]    [c.414]    [c.52]    [c.200]    [c.270]    [c.104]   
Методы высокомолекулярной органической химии Т 1 Общие методы синтеза высокомолекулярных соединений (1953) -- [ c.131 ]




ПОИСК





Смотрите так же термины и статьи:

Плотность электронов

Электрон связи

Электронная плотность

Электронная плотность Плотность электрон

Электронная плотность Электроны

Электронная плотность различных типов

типы связ



© 2025 chem21.info Реклама на сайте