Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Найлон прочность

    Вследствие ценного комплекса свойств, присущего найлонам,— прочности и эластичности, термостабильности, стойкости к действию растворителей, смачиваемости и устойчивости к щелочному гидролизу, которым не обладает ни один класс полимеров, можно с основанием утверждать, что в производстве микрофильтрационных мембран для процессов фильтрации найлоны будут сохранять лидирующую позицию. [c.147]


    Смески найлона с шерстью исследовались более подробно, чем какие-либо другие смески, вероятно, потому, что оба эти волокна очень хорошо дополняют друг друга. Найлон придает повышенную прочность, причем увеличение прочности приблизительно пропорционально содержанию найлона и на каждые 10/о введенного найлона прочность увеличивается почти на 50%. Прочность в мокром состоянии также увеличивается—явление, обратное тому, которое наблюдается для смесок шерсти с вискозным штапелем. Устойчивость к истиранию может быть повышена в несколько раз при введении менее 50% найлона. Усадка в значительной степени уменьшается, если содержание найлона достаточно велико при содержании найлона 65% усадка меньше 5%. Шерсть придает свойственные ей упругость и несминаемость и способность давать, подобно извитому найлоновому волокну, очень пухлую пряжу. [c.400]

    Полиамидные ткани (капрон, найлон, анид) отличаются высокой прочностью в сухом и влажном состоянии продолжительность их службы в несколько раз превышает срок службы хлопчатобумажных тканей. Они устойчивы к действию щелочей даже при повышенной температуре (100°С и выше), а также разбавленных кислот при обычной температуре. [c.368]

Рис. 9-30. Зависимость прочности и модуля упругости углепластика на основе Найлона 66 с дискретными углеродными во-локв Мй ОТ содержания волокна. [9-Щ. Рис. 9-30. <a href="/info/302022">Зависимость прочности</a> и <a href="/info/9035">модуля упругости</a> углепластика на основе Найлона 66 с дискретными углеродными во-локв Мй ОТ содержания волокна. [9-Щ.
    Водородные связи обеспечивают прочность и эластичность волокон полимеров, имеющих в своем составе С—О- и МН-группы, таких, как, например, синтетические полиамиды (найлон и др.). Молекула полиамида обычно имеет строение [c.274]

    Поликарбонаты обладают чрезвычайно высокой ударной прочностью. Если ударную прочность ацетата целлюлозы принять за 1, то для найлона она равна 5, для терилена —6, а для лексана —40. [c.355]

    В последнее время советскими химиками создано новое полиамидное волокно энант, отличающееся большей эластичностью, светостойкостью и прочностью по сравнению с капроном и найлоном. Энант получается поликонденсацией со-аминоэнантовой кислоты (стр. 371). Технологические процессы получения волокон капрон и энант схожи между собой. [c.417]

    Волокнообразующими свойствами обладают полимеры с линейной структурой, т. е. с очень длинными (вытянутыми) макромолекулами, при взаимном упорядочении которых возникают меж-молекулярные связи, препятствующие скольжению их и повышающие сопротивление одноосной деформации волокна, что способствует его более глубокой ориентации. До появления изотактического полипропилена считалось, что текстильные волокна с высокими физико-механическими свойствами можно получить только в том случае, если в линейных макромолекулах имеются группы, которые отличаются способностью к ассоциации. Высокую разрывную прочность найлона объясняли образованием межмолекулярных водородных мостиков. В отсутствие их, например в случае полиэтилентерефталатных и полиакрилонитрильных волокон, межмолекулярные силы возникают между полярными группами соседних макроцепей. [c.229]


    Найлон — синтетическое полимидное волокно типа капрон. По прочности превосходит природный шелк. Применяют для изготовления корда, транспортных лент, рыболовных сетей, трикотажных изделии и др. [c.85]

    Для получения некоторых поликонденсатов, например гексаметилен-диамина и адипиновой кислоты (найлон), воду требуется удалять в конечной стадии поликОнденсации под давлением 1 мм рт. ст. или даже меньше, так как в противном случае будут образовываться смолы, обладающие слишком малым молекулярным весом, что отрицательно сказывается на прочности изделий. [c.785]

    Из числа полимерных материалов, используемых для изготовления капиллярных колонок, наилучшим образом зарекомендовали себя полиамиды, например найлон [183, 184], перлон и дедерон [198]. Еще на начальном этапе развития капиллярной газовой хроматографии Голей [70] попытался провести разделение на колонке из поливинилацетата, однако без большого успеха. Распространению капилляров из фторопластов препятствует то обстоятельство, что они практически не смачиваются. Достоинством всех полимерных материалов является их пластичность из них можно вытянуть капилляры практически неограниченной длины, которые к тому же в отличие от металлических прозрачны, чтО позволяет частично осуществлять визуальный контроль за процессом смачивания. Полиамидные капилляры хорошо смачиваются без какой-либо предварительной подготовки поверхности. Главными недостатками полимерных капилляров являются их малая термостойкость и малая механическая прочность. Их можно ис- [c.46]

    Пропуская под давлением расплав найлона или капрона через фильеры с мельчайшими отверстиями, получают волокна, превосходящие по прочности натуральные. [c.384]

    Прочность при растяжении и при изгибе возрастают приблизительно в два раза. Модули упругости увеличиваются в три раза. Повышается и теплостойкость материалов, особенно полипропилена и найлона 6,6. [c.273]

    На зависимости предела прочности от состава наблюдается характерное резкое падение теоретических значений прочности в области относительно низких концентраций наполнителя. Для рэйона, полиакрилонитрильного и стеклянного волокон минимальное значение предела прочности при растяжении достигается при содержании 20 объемн. %. Для найлона эта величина соответствует 50 объемн. %. При дальнейшем повышении содержания наполнителя наблюдается рост предела прочности при растяжении, но более [c.295]

    Зависимость относительных удлинений при разрыве от содержания наполнителя характеризуется резким падением этого показателя уже при малом содержании волокна. Минимальное значение удлинения достигается приблизительно нри 20 —30%-ном содержании волокна (для найлона несколько выше, около 50%). Интересно отметить, что минимальное значение относительного удлинения при разрыве достигается при том же содержании волокна, при котором наблюдается минимум предела прочности. [c.295]

    Сообщается о выпуске теплостойкого найлонового волокна НТ-1, представляющего собой линейный ароматический полиамид (найлон-44) [224—226]. Это волокно после нагревания при 272° С в течение 500 час. сохраняет 50% прочности, не растворяется в органических растворителях и не плавится, по разлагается выше 540° С, самозатухает при вынесении из пламени и устойчиво к действию кислот, оснований, а также к окислению. [c.248]

    Из этилена получают этиленгликоль — один из компонентов, используемых при синтезе терилена — наиболее ценного волокна среди всех синтетических и искусственных волокон. Терилеповое волокно отличается высокой, приближающейся к найлону, прочностью, большой устойчивостью к действию кислот, окислителей и других химических реагентов оно не подвержено гниению. Главная отличительная черта волокна из терилена — большая упругость оно не мнется. Костюмы, изготовленные из такого [c.125]

    Весьма перспективным и сравнительно новым направлением переработки пропилена является получение из него полипропилена. По сравнению с полиэтиленом полипропилен имеет более высокие температуру плавления, механическую прочность и сопротивление разрыву. Он используется для изготовления прозрачных пленок и синтетических волокон, имеющих такую же прочность, как найлон. Фирма Монтекатини изготовляет из полипропилена теплостойкий (до 150°) термопласт моплен, который обладает хорошим сопротивлением действию кислот и масел. [c.77]

    Так, у веществ, молекулы которых представляют собой длинные цепи, при величинах энергии когезии в 1—2 ккал1моль проявляются свойства гибкости, эластичности. Примером подобных веществ может служить каучук. При энергии же когезии 5 ккал/моль и выше вещество обладает большой твердостью, прочностью и проявляет тенденцию к кристаллической структуре. Сюда относятся волокнообразующие материалы (например, различные виды синтетического волокна найлон). [c.99]

    Свойства полиамидов и области их применения. Полиамиды— твердые роговидные полимеры с высокой температурой плавления (например, 218°С у капрона, 264°С у найлона). Высокая температура плавления объясняется значительным процентом кристаллической фазы и образованием водородных связей между цепями (рис. 66, а). Полиамиды обладают хорошими механическими свойствами. Они весьма стойки к истиранию и отличаются высокой разрывной прочностью (700—750 кгс1см ). Плотность 1,14. Полиамиды регулярного строения очень стойки к действию обычных растворителей. Только сильно полярные соединения, такие, как фенол, крезолы, муравьиная кислота, растворяют полиамиды такого типа. Смешанные полиамиды растворяются при нагревании в низших алифатических спиртах (метиловом, этиловом) в смеси с небольшими количествами воды (от 10 до 20%). При остывании и хранении растворы смешанных полиамидов преврашаются в гелеобразную массу. При нагревании гель можно снова превратить в прозрачный раствор. [c.236]


    Синтетическими волокнами называют волокна, полученные из синтетических полимеров. Первыми синтетическими волокнами, выпущенными в промышленном масштабе, были полиамидные волокна — капрон, найлон, анид (стр. 479). В настоящее время полиамидные волокна производят во многих странах под разными названиями. По прочности, носкости, эластичности, стойкости к процессам старения они превосхадят природные волокна. Высокими качествами обладает группа синтетических волокон, получаемых из полиэфирной смолы — полиэтилентерефталата (лавсана, стр. 480). Полиэфирные волокна обладают высокой прочностью, 1(оскостью и особенно сопротивлением сминанию. Важное значение приобретают волокна из полиэтилена, полипропилена (стр. 468, 469), полихлорвинила (стр. 470), полистирола (стр. 470), полиакрилонитрила (стр. 473), сополимеров винилацетата и хлористого винила, поливинилового спирта (стр. 471). [c.484]

    Стереорегулярный полипропилен представляет особый интерес в производстве синтетического волокна [72]. Стоимость пропилена в 5 раз ниже стоимости полистирола и в 9 раз ниже стоимости полиамидного и полиэфирного волокон. В то же время удельная прочность волокон из полипропилена выше удельной прочности найлона (табл. ХП.И). Плотность полипропилена очень низка, следовательно, ткани из него отличаются особенной легкостью к тому же они абсолютно влагостойки, имеют высокие электроизоляционные качества, стойки к действию растворов кислот и ш елочей. Недостаток полипропиленовой ткани заключается в сравнительно низкой температуре ее плавления. [c.790]

    Пропуская под давлением найлон или капрон в расплавлей-ном состоянии через фильеры с отверстием диаметром 0,25 мк, получают волокна, превосходящие по прочности другие натуральные или искусственные волокна. [c.397]

    Полиамидные синтетические волокна получаются из фенола пли циклогексана. Эти волокна типа капрона и найлона (анида) имеют высокую разрывную прочность, эластичны, стойки к действию масел, жиров, растворителей, бактерий. Они трудно воспламеняются и не имеют запаха. Из них изготовляют канаты, шинный корд, транспортерные ленты, рыболовные снасти, ткани, искусственные jviexa. Эти изделия отличаются большой прочностью, экономичностью и долговечностью службы. [c.211]

    Кристаллические стереорегулярные полимеры, вырабатываемые из пропилена и других а-олефинов и но своим механическим свойствам занимающие промежуточное положение между полиэтиленом и полистиролом, найдут широкое применение в производстве формованных изделий. Стереорегулярные полимеры, вследствие их прозрачности и высокого сопротивления разрыву особенно пригодны для производства пленки. Вследствие высокого сопротивления разрыву и сравнительно низкой стоимости они представляют также ценное сырье для производства текстильных волокон. Волокна из кристаллического полипропилена но сопротивлению разрыву равноценны полиэтилен-терефталатным, прочность которых достигает 7 г/денъе. Единственным серьезным недостатком полипропиленового волокна является более низкая температура плавления по сравнению с другими волокнами одинаковой прочности как найлон и дакрон. [c.306]

    Лен 2 — полиэфирная нить высокс прочности 3 — хлопок 4 — найлон 6 высокой прочности 5 — найлон 6,6 p j ней прочности б—полиэфирная нш средней прочности 7—вискозное волокН( 8 — полиакрилонитрильиое волокно > -шерсть. [c.249]

    Напротив, гибкие макромолекулы сравнительно простого строения, с регулярной структурой, гораздо легче укладываются в кристаллические решетки. К этой группе относятся такие полимеры, как полиэтилен, тефлон, найлон и другие полиамиды, в значительной мере образующие кристаллиты уже при комнатной температуре без охлаждения или растяжения например, полиэтилен при комнатной температуре закристаллизован на 50—70°о. Легко кристаллизуются также полимеры стереоспецифического регулярного строения (изотактические полимеры), молекулы которых обладают высокой химической однородностью они при комнатной температуре кристаллизуются почти нацело. Такие полимеры называются кристаллическими, тогда как все рассмотренные выше полимеры называются аморфными. Они обладают значительной прочностью, но гораздо менее эластичны, чем каучуки у полиэтилена высокая эластичность проявляется лишь при температуре выше 115°. Температура плавления кристаллитов большинства этих полимеров лежит выше 80°, причем ее положение смещается при растяжении полимера (Александров, Лазур-кин). Поэтому при деформации кристаллических полимеров происходит плавление одних кристаллитов и рекристаллизация других в направлении силы растяжения, что [c.234]

    Поликарбонаты хорошо растворяются в хлорированных углеводородах, диоксане, тетратидрофуране и диметилформамиде, что позволяет перерабатывать их методом полива из раствора (получение ттленок, волокон). Порошкообразный полимер перерабатывают литьем под давлением и прессованием. Поликарбонаты легко кристаллизуются при вытяжке и медленном охлаждении расплава. Поликарбонаты устойчивы к действию растворов солей, разбавленных минеральных кислот и неустойчивы к действию щелочей, влаги. Высокая прочность и диэлектрические свойства дают им преимущества перед найлоном. [c.117]

    Другое применение — нанесение кремнеземного покрытия на органическое волокно, когда нить должна подвергаться пиролизу с целью формирования новой химической структуры, но при этом в процессе температурного воздействия в течение определенного периода такое волокно необходимо поддерживать механически, по мере того как оно проходит через пластичное состояние. Бернетт и Загер [555] покрывали полиакри-лонитриловые волокна коллоидным кремнеземом, чтобы обеспечивать их механическое усиление до тех пор, пока в процессе нагревания волокно приобретет новое состояние—структуру с поперечными связями, способную самостоятельно поддерживать необходимую механическую прочность. Благодаря улучшенным фрикционным свойствам волокон ткани получаются более прочными к истиранию [556], Для применения к волоконным тканям пирогенный кремнезем предварительно диспергируется в воде с добавлением ПАВ [557]. Благодаря нанесению окрашенных окспдов металла с добавлением коллоидного кремнезема и с последующим нагреванием для придания такому покрытию прочного связывания с подложкой предотвращается эффект проскальзывания стеклянных волокон и одновременно приобретается стойкое окрашивание поверхности волокна [558]. Чтобы не допускать проскальзывания нитей в узелках при изготовлении рыболовных сетей из найлона, на такие узлы наносится смесь, состоящая из коллоидного кремнезема с добавлением СНз[Н2Ы(СН2)4]51(ОЕ1)2 и воды [559]. [c.588]

    Полиамид 6,8, который получают поликонденсацией адипиновой кислоты с ксилилендиамином, отличается повышенной теплостойкостью. Пластическая масса полиамид П-6 и волокно энант, по прочности превосходяп ие найлон 6 и найлон 6,6, получены на основе (о-аминоэнантовой кислоты. С целью снижения стоимости полиамидов для их синтеза используют смеси дикарбоновых алифатических кислот или их метиловых эфиров, получаемых окислением керогена сланца [46]. [c.250]

    Важной проблемой является обеспечение хорошей адгезии связу-юш его полимера к поверхности стекла (рис. 10). В качестве меры адгезии может рассматриваться соотношение пределов прочности армированного и неармированного образцов. Для иллюстрации рассмотрим два различных полимера — полипропилен и найлон 6,6. Полипропилен принципиально трудно упрочнить из-за неполяр-ности его цепи и отсутствия реакционноспособных групп. Наоборот, найлон высокополярен и легко поддается упрочнению. Для использования в армированных компрзициях полипропилен подвергают специальной химической модификации [11, что заметно усиливает эффект армирования. [c.281]

    Зисман и Бопп [3] наблюдали, что в найлоне, облученном в ядерном реакторе, при 25° наблюдается увеличение модуля упругости и разрывной прочности. Удлинение и прочность на удар уменьшаются. При 10 э нейтрон/см величина модуля достигает значения, которое больше чем вдвое превышает начальное. Эти результаты можно объяснить только сшиванием. [c.191]

    Полиимиды являются весьма теплостойкими полимерами и могут применяться в интервале температур 149—371° С. Так, через 1000 час. при 299° С у них сохраняется 90% разрывной прочности короткое время они выдерживают нагревание до 500° С. Модуль эластичности при 371° С сравним с модулем найлона прп комнатной температуре [323]. Они имеют хорошие диэлектрические свойства и низкий коэффициент трения [319], характеризуются высокой радиационной устойчивостью и стойкостью к солнечному свету и дейетвию растворителей. Срок службы пленки (Н-РПт) па воздухе при 249° С — 10 лет при 274° С — 1 год при 299° С — 1 месяц при 399° С — одни сутки [319—322, 324, 325]. Хладотекучесть у полиими-дов меньше, чем у всех других полимеров [324, 325]. [c.261]


Смотреть страницы где упоминается термин Найлон прочность: [c.95]    [c.468]    [c.505]    [c.280]    [c.367]    [c.670]    [c.288]    [c.459]    [c.467]    [c.250]    [c.310]    [c.61]    [c.295]    [c.459]    [c.467]    [c.470]    [c.174]   
Энциклопедия полимеров Том 3 (1977) -- [ c.3 , c.237 ]

Энциклопедия полимеров Том 3 (1977) -- [ c.3 , c.237 ]




ПОИСК





Смотрите так же термины и статьи:

Найлон



© 2025 chem21.info Реклама на сайте