Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Транспортные РНК в синтезе белка

    Частицы, называемые рибосомами, играют важнейшую роль в синтезе белка. Прежде чем попасть на собственно матричную РНК, аминокислоты соединяются с РНК, которая доставляет их к месту белкового синтеза. Эта транспортная РНК (т-РНК) существует во многих формах, так как число переносимых ею аминокислот (20) велико и каждой аминокислоте соответствует своя т-РНК. [c.391]

    В этом процессе ДНК играет роль матрицы , с которой отпечатываются копии молекул РНК, непосредственно участвующих в синтезе белка, — такой вид РНК называется информационным. Наряду с ними в процессе синтеза белка участвуют транспортные РНК, каждая из которых специфично связывается с определенной аминокислотой и доставляет ее к нужному месту информационной РНК, после чего остатки аминокислот соединяются пептидной связью, образуя молекулу белка. [c.353]


    В синтезе белка принимают участие по крайней мере три типа РНК транспортные, информационные и рибосомальные. Эти три вида РНК сильно различаются по молекулярной массе. Транспортные РНК имеют наименьшую молекулярную массу, а информационные РНК — наибольшую. Для транспортных РНК характерно наличие в них редко встречающихся нуклеотидов (так называемых миноров). [c.365]

    ЭТОМ образуются специфич. пары комплементарных оснований, имеющие почти одинаковые размеры. Поэтому двойная спираль имеет очень однородную регулярную структуру, мало зависящую от конкретной последовательности оснований-св-во очень важное для обеспечения универсальности механизмов репликации (самовоспроизведение ДНК или РНК), транскрипции (синтез РНК на ДНК-матрице) и трансляции (синтез белков на РНК-матрице). В каждом из этих т. н. матричных процессов К. играет определяющую роль. Напр., при трансляции важное значение имеет К. между тройкой оснований матричной РНК (т. и. кодоном, см. Генетический код] и тройкой оснований транспортной РНК (поставляют во время трансляции аминокислоты). К. определяет также вторичную структуру нуклеиновых к-т. Одноцепочечные РНК благодаря К. оснований, навиваясь Сами на себя, образуют относительно короткие двухспиральные области ( шпильки и петли ), соединенные одноцепочечными участками, К. в отдельных парах оснований ДНК может нарушаться из-за появления отклонений в их строении, к-рые могут возникать спонтанно или в результате действия разл. факторов (химических и физических). Следствием этих изменений м. б. мутации. [c.443]

    Отличие молекулы РНК от ДНК заключается в том, что в первой вместо дезоксирибозы содержится сахар рибоза, а кроме того, основание тимин (Т) заменено основанием урацил (У). Таким образом, алфавитом для построения РНК служат пары оснований АУ и ГЦ. Молекула РНК обычно остается лестницей с перилами с одной стороны , она проходит сквозь оболочку клеточного ядра и затем управляет синтезом белков в цитоплазме клетки. Другая разновидность РНК, называемая транспортной РНК, выполняет роль инженера по технадзору за строительством , который проверяет укладку каждого кирпича, чтобы установить, соответствует ли она чертежам , принесенным молекулами РНК первого типа (так называемыми мессенджер-РНК, что означает посыльными РНК). [c.486]

    Синтез белка осуществляется афегатами, состоящими из рибосом, молекул информационной и транспортных РНК и называемыми полирибосомами, или полисомами. Последние могут находиться в цитоплазме или же быть связанными с мембранными структурами. [c.54]

    Транспортные РНК Рис. 95. Схема синтеза белка в клетке [c.560]

    Передача информации при М. п. происходит благодаря тому, что матрица осуществляет структурно-химич. контроль над совокупностью элементарных актов роста дочерней цепи, причем контакт между матрицей и растущей цепью м. б. прямым (как при репликации ДНК или синтезе информационной РНК — см. Нуклеиновые кислоты) или через посредников (как в синтезе белка на информационной РНК с участием транспортной РНК). [c.74]


    Как уже отмечалось, функцией РНК является реализация матричного синтеза белка. Выше мы рассмотрели принципы кодирования белковой цепи. Разберем теперь механизм реализации этого принципа. Информация о, структуре белка содержится в матричной РНК, к-рая является копией одной из цепей ДНК (с заменой дезоксирибозы на рибозу и тимина на урацил, что не отражается на спаривании оснований). Матричную РНК можно себе представить разбитой на триплеты (кодоны). Нужная последовательность аминокислот на матрице набирается с помощью транспортной рибонуклеиновой к-ты. [c.195]

    Эта активная форма аминокислоты соединяется с транспортной РНК, специфической для каждой аминокислоты, и доставляется к месту синтеза белка, в рибосомы. Туда же поступает информационная РНК, образовавшаяся путем удвоения из ДНК, и, следовательно, как бы списавшая код наследственных признаков, зашифрованный в молекуле ДНК. [c.653]

    Информационные РНК называются так потому, что они синтезируются на ДНК и несут наследственную информацию, записанную в виде определенной последовательности нуклеотидов в ДНК,— от ядра (где содержится ДНК) в рибосомы (где происходит синтез белка) (А. Н. Белозерский). В рибосомах на молекулах поступившей туда информационной РНК идет синтез белков из аминокислотных остатков, доставляемых сюда транспортными РНК. При этом в и-РНК каждым трем мононуклеотидам (триплету нуклеотидов) соответствует одна аминокислота. [c.412]

    Транспортные РНК называются так потому, что они транспортируют активированные остатки аминокислот, необходимые для синтеза белка, в рибосомы. Это наиболее низкомолекулярные нуклеиновые кислоты, чем и объясняется, что ряд представителей именно группы т-РНК был расшифрован ранее других РНК (Холли, А. А. Баев). Сейчас известно, что расшифрованные т-РНК имеют ряд общих черт строения, состоят из сравнительно небольшого числа нуклеотидов порядка 70—80. Число т-РНК превышает число аминокислот, участвующих в построении белков, т. е. некоторые аминокислотные остатки переносятся не одной т-РНК. [c.412]

    Представление о строении нуклеиновых кислот нуклеозиды и нуклеотиды. Гетероциклические основания, рибоза (дезоксирибоза) и фосфорная кислота как структурные единицы нуклеиновых кислот. Представление о строении РНК и ДНК. Биологические функции ДНК и РНК. Рибосомальные, информационные и транспортные РНК. Связь между строением и биологическими функциями нуклеиновых кислот. Двойная спираль как модель молекулы ДНК. Роль водородных связей аденин — тимин и гуанин — цитозин в образовании двойной спирали. Правило Ча )-гаффа. Проблема передачи наследственной информации. Вещество, энергия и информация — необходимые компоненты при синтезе белка. Гснетическин код как троичный неперекрывающийся вырожденный код. [c.249]

    Синтез РНК связан с количеством транспортной т-РНК, т. е. РНК переносящей аминокислоты. Если концентрация молекул т-РНК, не имеющих нагрузки, возрастает, то синтез РНК задерживается. Действие этого поразительного механизма уже само по себе указывает на постоянную пространственную близость всех деталей аппарата, синтезирующего белок. В действительности так оно и есть, ведь синтез белка протекает в рибосомах, т. е. в организованных частицах клетки. Число структур, образуемых мембранами, не исчерпывается, конечно, митохондриями и рибосомами. Ядро клетки, лизосомы, аппарат Гольджи и другие органел-лы также построены из мембран они же послужили и материалом для создания нейронов — элементов нервной системы, в том числе и мозга, выполняющего высшие кодовые функции. [c.395]

    Один из видов РНК, так называемая РНК-посредник, или информащон-ная РНК переносит информацию на рибосому, где собственно и происходит синтез белка. В рибосому к информационной РНК поступает набор транспортных РНК, каждая из которых связана с определенной аминокислотой (о последовательности оснований в одной из этих 20 транспортных РНК, а именно об РНК, переносящей аланин, и шла речь на стр. 1062). Порядок поступления молекул транспортной РНК в рибосому, а следовательно, и последовательность включения аминокислотных остатков в белковую цепь зависит от последовательности оснований в цепи информационной РНК- Так, ГУА является кодовым словом для аспарагиновой кислоты, УУУ — для фенилаланина, УГУ — для валина. Существует 64 трехбуквенных слова (64 кодона) и лишь двадцать аминокислот, и поэтому одной и той же аминокислоте могут соответствовать несколько кодонов для аспарагина — АЦА и АУА, для глутаминовой кислоты — ГАА и АГУ. [c.1065]

    Вся информация о строении и функционировании любого живого организма содержится в закодированном ввде в его генетическом материале, основу которого составляет дезоксирибонуклеиновая кислота (ДНК). ДНК большинства организмов — это длинная двухцепочечная полимерная молекула. Последовательность мономерных единиц (дезоксирибонуклеотидов) в одной ее цепи соответствует (комплементарна) последовательности дезоксирибонуклеотидов в другой. Принцип комплементарности обеспечивает идентичность новосинтезированных молекул ДНК, образующихся при их удвоении (репликации), исходным молекулам. Индивидуальными генетическими элементами со строго специфичной нуклеотидной последовательностью, кодирующими определенные продукты, являются гены. Одни из них кодируют белки, другие -только молекулы РНК. Информация, содержащаяся в генах, которые кодируют белки (структурных генах), расшифровывается в ходе двух последовательных процессов синтеза РНК (транскрипции) и синтеза белка (трансляции). Сначала на определенном участке ДНК как на матрице синтезируется матричная РНК (мРНК). Затем в ходе согласованной работы многокомпонентной системы при участии транспортных РНК (тРНК), мРНК, ферментов и различных белковых факторов осуществляется синтез белковой молекулы. Все эти процессы обеспечивают правильный перевод зашифрованной в ДНК генетической информации с языка нуклеотидов на язык аминокислот. Аминокислотная последовательность белковой молекулы однозначно задает ее структуру и функции. [c.29]


    Субстратами матричного синтеза белка являются аминокислоты, соединенные с тРНК, причем последние способствуют переводу информации с последовательности нуклеотидов на последовательность аминокислот. Транспортные РНК представляют собой одноцепочечные молекулы сравнительно небольшой молекулярной массы (22—26 kDa) и состояшие из 80—100 нуклеотидов. Каждой аминокислоте соответствует от одной до шести транспортных РНК, с которыми она может образовывать комплекс (гл. 14). [c.464]

    Известны три типа РНК, участвующих в синтезе белка, но выполняющих при этом разные функции 1) транспортные (тРНК) 2) рибосомальные (рРНК) 3) информационные, или матричные (мРНК). См. Нуклеиновые кислоты. [c.264]

    Многочасовым центрифугированием при 100000 g можно разделить разбавленную водной средой цитоплазму на растворимую фракцию, содержащую главным образом растворимые ферменты и растворимую рибонуклеиновую кислоту (РНК), и фракцию частиц, в которую наряду с мембранами в первую очередь входят рибосомы. Растворимые ферменты катализируют множество различных реакций распада и синтеза. Растворимые рибонуклеиновые кислоты [матричные (мРНК) и транспортные (тРНК)] и рибосомы участвуют в синтезе белка. [c.22]

    Трансляция. Трансляция информации, содержащейся в и-РНК, заканчивается синтезом специфической белковой молекулы. К полисо-мам, где происходит синтез белка, подвозятся аминокислоты с помощью транспортных РНК (т-РНК). Аминокислоты перед этим активируются с помощью ферментов аминоацил-т-РНК-синтетаз при использовании энергии АТФ  [c.95]

    Важными компонентами цитоплазмы являются рибосомы, ферменты, рибонуклеиновые кислоты (РНК). Рибосомы представляют собой мембранные структуры 16 X 18 нм, состоящие на 40% из белка и на 60% из РНК. Они являются центрами синтеза белка. Одним из доказательств этого служит концентрация антибиотика хлорамфеннкола на рибосомах. Механизм действия хлорамфеннкола на бактерии состоит в подавлении синтеза белка в бактериальных клетках, чувствительных к этому антибиотику. Бактериальная клетка содержит около 10 000 рибосомальных частиц. Матричная и транспортная РНК участвуют в синтезе белков. Ферменты катализируют реакции синтеза и распада. При обработке лизоцимом бактериальных клеток протопласт приобретает сферическую форму и сохраняет жизнеспособность. В протопластах происходят важнейшие биохимические процессы биосинтез белка и нуклеиновых кислот, [c.26]

    Наиб, крупные достижения М. б. расшифровка структуры белков и нуклеиновых к-т (М. Перутц, Дж. Кевдрю, Дж. Уотсон, Ф. Крик, У. Гилберт) создание адапторной теории белкового синтеза (Ф. Крик) и теории регуляции синтеза белков в бактериях (Ф. Жакоб, Ж. Моно) открытие транспортной и матричной РНК, расшифровка генетич. кода (М. Ниренберг, G. Очоа) открытие обратной транскрипции (X. Темин, Д. Балтимор), прерывистой структуры генов и механизма созревания матричных РНК у эукариот развитие методов генной инженерии (П. Берг, [c.347]

    ДНК служит универс. хранителем и источником генетич. информации, записанной в ввде специфич. последовательности оснований и определяющей св-ва живого организма она способна к конвариантной редупликации (точному само-копированию), у нек-рых вирусов в этой роли выступает РНК. На ДНК, как на матрице, синтезируются матричные, или информационные, РНК (мРНК), служащие матрицами при синтезе белка рибосомные РНК (рРНК), образующие структурную (и, частично, функциональную) основу белок-синтезирующего аппарата клетки транспортные РНК (тРНК), участвующие в синтезе белка в кач-ве адапторных молекул-переносчиков аминокислот. [c.394]

    У морских ежей кратковременное повышение концентрации Са активирует специфические транспортные белки в плазматической мембране яйца (возможно, при участии кальмодулина), которые используют энергию, запасенную в виде трансмембранного градиента иоиов Na , для откачивания ионов Н из клетки (см. разд. 6.4.10). Отток ионов приводит к тому, что внутриклеточная величина pH возрастает с 6,6 до 7 и в дальнейшем поддерживается на этом уровне (см. рис. 14-48). Есть данные в пользу того, что именно это повышение pH индуцирует в оплодотворенных яйцах морского ежа позднюю биосинтетическую активность. Во-первых, если повысить pH в неопло-дотворенных яйцах, инкубируя их в среде, содержащей аммиак (рис. 14-52), то процессы синтеза белков и репликации ДНК заметно усиливаются даже без повышения внутриклеточной концентрации свободных ионов Са . Во-вторых, если сразу после оплодотворения поместить яйца в морскую воду, не содержащую ионов Na (так что не будет градиента Na для откачивания ионов Н ), внутриклеточный уровень pH не повышается н поздние события, связанные с активацией яйца, не наступают. Такие яйца еще можно спасти, добавив к среде аммиака тогда pH в клетке возрастает и даже прн отсутствии внеклеточного Na индуцируется синтез белков и ДНК. [c.48]

    В клетках растений находятся по крайней мере два типа РНК — растворимая, или транспортная, и рибосомная. Рибосомы представляют собой рибонуклеопротеидные частицы, которые, по-видимому, являются местом синтеза белка. Рибосомы, полученные из разных объектов, одинаковы по составу и по строению. Препараты рибосом состоят почти целиком из РНК и белка и содержат в относительно большом количестве двухвалентные катионы. [c.474]

    Транспортные РНК- Эти кислоты имеют молекулярный вес около 25000 и характеризуются константой седиментации 45. Они выполняют функцию переноса активированных аминокислот к рибосомам — месту синтеза белка. Известны около 30 типов молекул т-РНК, каждый из которых переносит определенную аминокислоту. К настоящему времени расшифрована первичная структура аланиновой, валиновой, фенилаланиновон, тирозиновой и двух сериновых т-РНК. Одна из них — валиновая т-РНК— расшифрована в ла боратории советского ученого А. А. Баева [2]. [c.12]

    В клетке РНК представлены тремя хорошо известными видами рибосомальной (р-РНК), транспортной (т-РНК) и ин- фopмaциoннoй (м-РНК). Первая участвует в молекулярной организации рибосом. Молекулы второй находятся в свободном состоянии в водной фазе протоплазмы, но во время синтеза белка они временно связываются в комплексе рибосома — м-РНК. Последняя, как полагают, связана одновременно с комплексом рибосом, образуя полисому, или покрыта белковой оболочкой и представляет собой информосому по А. С. Спирину [c.164]

    Перенос питательных веществ через плазматическую мембрану, как правило,,специфичен поглощаться могут только те вещества, для которых имеется соответствующая транспортная система. За небольщими исключениями, транспорт зависит от наличия специфических пермеаз или транслоказ. Речь идет о мембранных белках, само название которых указывает на то, что они обладают свойствами ферментов, т.е. могут индуцироваться субстратом, специфичны в отношении субстрата и образуются только в таких условиях, в которых возможен синтез белков. [c.257]

    В состав большинства молекул РНК также входит только четыре основания пурины — аденин и гуанин — и пиримидины — урацил (а не тимин, как в ДНК) и цитозин. В некоторых видах РНК, особенно в низкомолекулярных ( растворимых ) РНК, осуществляющих перенос аминокислот к месту синтеза белка и потому называемых транспортными (см. стр. 154), присутствуют необычные основания гипоксантин и различные метилированные производные — тимин, 5-метилцитозин, 6-метиламинопурин, 6,6-диметиламинопурин, 1-метилгуанин, 2-метиламино-6-оксипурин и 2,2-диметиламино- [c.123]


Смотреть страницы где упоминается термин Транспортные РНК в синтезе белка: [c.394]    [c.237]    [c.270]    [c.595]    [c.154]    [c.265]    [c.268]    [c.8]    [c.286]    [c.100]    [c.100]    [c.513]    [c.488]    [c.118]    [c.457]    [c.558]    [c.105]    [c.391]    [c.181]    [c.437]   
Смотреть главы в:

Биохимия человека Т.2 -> Транспортные РНК в синтезе белка

Биохимия человека Том 2 -> Транспортные РНК в синтезе белка




ПОИСК





Смотрите так же термины и статьи:

Транспортная РНК



© 2024 chem21.info Реклама на сайте