Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Транспорт электронов и фосфорилирование при фотосинтезе

    Вещества, ингибирующие электронный транспорт, как следствие ингибируют также окислительное фосфорилирование, фотосинтез и фотофосфорилирование. Некоторые вещества (например, динитрофенол), которые разобщают или ингибируют фосфорилирование или ингибируют стадию выделения кислорода в процессе фотосинтеза, могут не оказывать влияния на электронный транспорт или даже стимулировать его. [c.251]


    В течение длительного времени считали, что АТФ и другие высокоэнергетические соединения, находящиеся в равновесии с ним, представляют собой единственную форму энергии, которая может использоваться живыми клетками во всех энергозависимых процессах. Вопрос о характере связи между транспортом электронов, с одной стороны, и превращением фосфорных соединений, с другой, долгое время оставался неясным. Было установлено, что использование энергетических ресурсов (органических или неорганических соединений при дыхании, света при фотосинтезе) связано с переносом электронов по цепи, состоящей из белковых и небелковых компонентов, способных к обратимому окислению — восстановлению. В результате этого переноса освобождающаяся на отдельных участках дыхательной или фотосинтетической цепи энергия трансформируется в химическую энергию фосфатных связей АТФ. Молекулярный механизм фосфорилирования, сопряженный с электронным транспортом, был неизвестен. [c.100]

    Во второй части рассматриваются биоэнергетика и метаболизм клеток- основное блюдо биохимии. После изложения принципов клеточной биоэнергетики следует детальное описание гликолиза, цикла трикарбоновых кислот, транспорта электронов и окислительного фосфорилирования. Далее идут главы, в которых рассматривается катаболизм жирных кислот и аминокислот, а затем главы, посвященные биосинтетическим процессам и фотосинтезу. Подробно обсуждаются метаболические последовательности и принципы их регуляции. [c.8]

    Во второй том вошли материалы по биоэнергетике и метаболизму клетки. Рассмотрены роль глюкозы в биоэнергетических процессах, цикл лимонной кислоты, электронный транспорт, окислительное фосфорилирование, регуляция образования АТФ, окисление жирных кислот в тканях животных, окислительный распад аминокислот, биосинтез углеводов, липидов, нуклеотидов, аминокислот, а также фотосинтез. [c.372]

    Возвращаясь к физиологическим фотореакциям, отметим, что естественный отбор сконструировал и изготовил специализированные механизмы реализации действия света двух типов с усилением и без него. Последний работает, например, в фотосинтезе (транспорт электронов с фотосинтетическим фосфорилированием), который с известными энергетическими потерями запасает в органических молекулах лишь часть энергии света (около 30-40%). [c.374]


    Фосфорилирование при переносе электронов протекает в клеточных мембранах и осуществляется в процессах дыхания и фотосинтеза. В процессе дыхания органические или неорганические соединения служат донорами электронов (они при этом окисляются), а акцепторами электронов выступают неорганические соединения (они при этом восстанавливаются). Транспорт электронов от доноров к акцепторам, который протекает в дыхательной цепи, сопряжен с синтезом АТФ из АДФ и неорганического фосфата (Ф ). При аэробном дыхании конечным акцептором электронов является молекулярный кислород. Такой способ образования АТФ называется окислительным фосфорилированием. [c.46]

    Транспорт электронов и фосфорилирование при фотосинтезе [c.67]

    Гемоглобин и миоглобин —комплексы железопорфиринов с белками, выполняющие функцию фиксации и транспорта молекулярного кислорода в организмах животных. Цитохромы, имеющие аналогичную принципиальную структуру, выполняющие роль переносчика электрона в схемах фотосинтеза, дыхания, окислительного фосфорилирования и др. окислительно-восстановительных реакциях, найдены у всех животных, растений и микроорганизмов. Хлорофиллы — главные участники процессов фотосинтеза — содержатся в высших растениях, водорослях и фотосинтезирующих бактериях. [c.265]

    Несмотря на то, что механизмы бактериального и растительного фотосинтеза имеют много общего, между ними есть некоторые частные различия. Фотофизические и первичные фотохимические стадии любого фотосинтеза универсальны с тем лишь исключением, что у бактерий функцией фотохимически активного пигмента обладает не хлорофилл, а бактериохлорофилл. Наиболее выраженные различия обнаруживаются на стадии электронного транспорта и сопряженного с ним фосфорилирования. Они касаются числа фотосистем, управляющих электронным транспортом, природы и последовательности расположения в цепи переносчиков электронов. Кроме того, между различными представителями бактериального мира отмечается некоторая вариабельность по всем этим признакам. [c.89]

    Важнейшие физиологические функции в живой клетке выполняют профириисодержащие жрамопротеиды — гемопротеиды и хлорофилл. Гемопротеиды участвуют в клеточном дыхании, хлорофилл — в фотосинтезе. Несмотря иа кажущееся различие этих двух процессов, общим для них является проблема транспорта электронов и сопряженного с ним фосфорилирования, в одном случае окислительного, в другом — фотос и н тетического. [c.100]

    Общая характеристика фотосинтеза. Фотосинтез — это совокупность процессов, в ходе которых солнечная энергия запасается в виде химических связей органических соединений, синтезируемых из неорганических веществ. Он состоит из двух фаз световой (фото-физический и фотохимический этапы) и темновой. В ходе световой фазы происходит поглощение солнечной энергии хлорофиллом и передача ее в реакционный центр, где в результате химических реакций, включающих транспорт электронов между различными переносчиками и сопряженного с ним фосфорилирования, образуются восстановительные и энергетические эквиваленты (НАДФН и АТФ). Для протекания световой фазы требуются световая энергия, сборщики световой энергии и вода (или другой источник водорода). Темновая фаза фотосинтеза — это фиксация и восстановление СО2 с образованием углеводов и других конечных продуктов [c.193]

    Исследованиями последних лет в значительной мере выяснена роль в процессах дыхания, а также фотосинтеза ферментов, содержащих железо. Здесь необходимо назвать цитохромную систему, основной путь биологического окисления, путь транспорта электронов от разнообразных дыхательных субстратов к кислороду. Установлена ведущая роль этой системы в энергетическом обмене клетки. Процессы окислительного и фотосинтетического фосфорилирования могут осуществляться лишь при непосредственном и непременном участии физиологически активных соединений, включающих железо. Промежуточными переносчиками электронов как в цепи дыхания, окисления дыхательных субстратов, так и восстановления углекислоты в фотосинтезе являются соединения железопорфириновой природы (различные цитохро-мы), а также ряд переносчиков, содержащих железо в негеми-новой форме (ферредоксин, НАД-Н-цитохром-с-редуктаза, ксан-тиноксидаза, сукцинатдегидрогеназа и др.). [c.4]

    В плазматических мембранах бактерий, во внутренних мембранах митохондрий и тилакоидных мембранах хлоропластов обнаруживаются ферменты, очень похожие на две обсуждавшиеся выше транспортные АТРазы. Однако здесь они обычно действуют в обратном направлении. Вместо гидролиза АТР, обеспечивающего транспорт ионов, они катализируют синтез АТР из ADP и фосфата, осуществляемый благодаря наличию на этих мембранах градиента протонов. Градиент Н" возникает на отдельных этапах транспорта электронов в процессе окислительного фосфорилирования (у аэробных бактерий и в митохондриях) или фотосинтеза (в хлоропластах), а также с помощью фотоактивируемого протонного насоса (бактериородоисина у Haloba terium). Эти ферменты, в норме синтезирующие АТР, названы ТР-синтетазами Как и транспортные АТРазы, они способны работать в обоих направлениях в зависимости от условий либо гидролизовать АТР и качать Н" через мембрану во внутреннее пространство, либо синтезировать АТР при прохождении потока ионов Н" через молекулы ферментов в обратном направлении. АТР-синтетазы ответственны за продукцию практически всего АТР в большинстве клеток и более детально обсуждаются в гл. 9. [c.389]


    Обратимое фосфорилирование ССКП позволяет регулировать потоки световой энергии между ФС1 и ФСП. Предполагают, что переход из состояния 2 в состояние 1 усиливает циклический транспорт электронов, что влияет на соотношение первичных продуктов фотосинтеза АТФ и НАДФН2 (Vallon et aL 1992). [c.75]

    Витамин К является простетической группой фермента, ответственного за синтез в печеночных клетках II, VII, IX и X факторов свертываемости крови как кофермент участвует в транспорте электронов и окислительном фосфорилировании. Основное назначение витамина К у растений - перенос электронов в процессе фотосинтеза. [c.98]

    Один из центральных вопросов современной биохимии заключаете в том, каким образом поток электронов по цепи переносчиков приэодц к образованию АТР. Вопрос этот очень важен, так как большая часть АТР, образующегося в аэробных и некоторых анаэробных организмах, генерируется именно в процессе окислительного фосфорилирования. Более того, энергия, улавливаемая в процессе фотосинтеза, идет на образование АТР с помощью очень сходного процесса. Механизм генерирования АТР может быть тесно связан с функционированием мембран при транспорте ионов. Вполне возможно, что механизм окислительного фосфорилирования в известном смысле является обратным механизму использования энергии АТР для мышечного сокращения. [c.391]

    В процессах дыхания и фотосинтеза освобождающаяся при переносе электронов энергия запасается первоначально в форме электрохимического трансмембранного градиента ионов водорода (ДДн+)> т.е. имеет место превращение химической и электромагнитной энергии в электрохимическую. Последняя затем может быть использована для синтеза АТФ. Поскольку в обоих процессах синтез АТФ обязательно связан с мембранами, реакции, приводящие к его образованию, получили название мембранзави-симого фосфорилирования. Последнее подразделяется на два вида окислительное (АТФ образуется в процессе электронного переноса при окислении химических соединений) и ф о-тосинтетическое (синтез АТФ связан с фотосинтетическим электронным транспортом) фосфорилирование. Следует подчеркнуть, что принципы генерации АТФ при фотосинтезе и дыхании, т. е. механизмы мембранзависимого фосфорилирования, одинаковы. Таким образом, энергия, получаемая в процессах брожения, дыхания или фотосинтеза, запасается в определенных формах. [c.97]

    Если процессы продуцирования энергии (фотосинтез, фотосин-тетическое и окислительное фосфорилирование) блокированы, перенос электронов в ФС II или трансформация энергии в дыхательных процессах попадают в тупик , иначе говоря, многие мембранные процессы протекают без синтеза АТФ. При этом одни вещества накапливаются в избытке, другие же оказываются полностью израсходованными из-за нарушений в механизме переноса веществ через мембрану. С активным переносом связано и понятие конкурентного торможения. Проявляется оно в том, что транспорт одного вещества замедляется или прекращается в присутствии другого, сходного по строению биологически активного вещества. Вещества обоих типов вступают в борьбу за молекулы, осуществляющие активный перенос, и возможно, что с одной стороны мембраны на другую будет транспортироваться не необходимое природное, а конкурирующее с ним биологически активное вещество, образующее в процессе метаболизма комплексное соединение с транспортной молекулой. [c.48]


Смотреть страницы где упоминается термин Транспорт электронов и фосфорилирование при фотосинтезе: [c.216]    [c.223]    [c.160]    [c.338]    [c.10]    [c.84]    [c.12]   
Смотреть главы в:

Фотосинтез -> Транспорт электронов и фосфорилирование при фотосинтезе




ПОИСК





Смотрите так же термины и статьи:

Фосфорилирование

Фотосинтез

Электроны при фотосинтезе



© 2024 chem21.info Реклама на сайте