Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Глюкоза роль в жизнедеятельности

    Роль этих веществ в жизнедеятельности животных важна и разнообразна. Дофамин стимулирует секрецию соматотро-пина (гормон роста) и подавляет секрецию пролактина (гормон роста молочных желез), он также регулирует уровень глюкозы в крови, диурез, кровоток в почках нарушение синтеза дофамина в мозгу — причина возникновения болезни Паркинсона. Норадреналин участвует в передаче нервных импульсов, воздействует на мышцы кровеносных сосудов, сужая их и повышая тем самым артериальное давление. Адреналин также способствует сужению мелких кровеносных сосудов, вызывает усиление работы сердда, расслабляет мускулатуру бронхов и кишечника. При эмоциональных переживаниях, особенно в стрессовых ситуациях, усиленной мышечной работе, охлаждении и тд. содержание адреналина в крови резко возрастает (оно может возрасти в 100 раз за несколько секунд), что обеспечивает адаптацию организма к новым условиям. [c.30]


    ГЛИКОЗИДЫ — производные сахаров (моносахаридов, дисахаридов и др.) в которых полуацетальный гидроксил замещен неуглеводным остатком агли-коном (алкоксигруппа, аминогруппа, меркаптогруппа и др.). При гил.ролизе Г. агликон выделяется в виде спирта, амина или меркаптана. Г. распространены в природе, играют большую роль в жизнедеятельности организмов, их используют в качестве лекарственных средств, витаминов, ядов. Г., производные глюкозы, называют глюкозидами. [c.76]

    Глюкоза играет важную роль в жизнедеятельности человека и животных. В количестве 5—6 г у взрослого человека она содержится в крови и спинномозговой жидкости. Кровь разносит глюкозу по всем клеткам тела, в которых в результате сложнейших последовательно происходящих реакций с различными химическими соединениями она превращается в углекислый газ и воду, используя выделяющуюся при этом энергию. В этом и заключена суть дыхания к клетке подводится гемоглобином вдыхаемый кислород, который окисляет глюкозу в углекислый газ и воду, выбрасываемые затем организмом. [c.148]

    Нахождение в природе. Глюкоза весьма распространена в растительном и животном мире. В большем или меньшем количестве она находится почти во всех тканях животных и растительных организмов. Много ее содержится в соке сладких плодов, особенно винограда. Этим и объясняется ее другое название — виноградный сахар. Роль глюкозы в жизни организмов велика она является тем веществом, при окислении которого в тканях освобождается энергия, необходимая для поддержания жизнедеятельности. [c.244]

    Г. солей, образованных сильной кислотой и сильным основанием, практически не происходит, реакция их растворов нейтральна. Г. имеет большое практическое значение, его используют для получения основных солей, гидроксидов, в промышленности для производства глюкозы, фурфурола, этилового спирта, многоатомных спиртов (глицерина), пищевых кислот Г. древесины и растительных материалов. Г. жиров — основа производства мыла и глицерина, ферментативный Г. применяют в пищевой текстильной и фармацевтической промышленности. Г. служит для очистки воды, в военном деле для дегазации (см. Дегазация). Г. минералов вызывает изменения в составе земной коры. Г. играет также большую роль в процессах жизнедеятельности живых организмов. [c.74]

    Гидролиз имеет большое народнохозяйственное значение, так как реакции гидролиза широко используются в химической промышленности. Например, гидролизом отходов лесопильной и деревообрабатывающей промышленности и отходов сельского хозяйства получают этиловый спирт, глюкозу и другие вещества. Гидролиз жиров составляет основу мыловарения и получения глицерина. Гидролизом пользуются для очистки питьевой и промышленных вод. Большую роль гидролиз играет в жизни природы и в процессах жизнедеятельности живых организмов. [c.158]


    Обратимость реакций анаэробного распада углеводов имеет очень большое значение в жизнедеятельности растений. Мы уже говорили, что пировиноградная кислота играет главную роль в углеводном обмене и занимает одно из важных мест в общем обмене веществ. Она связана взаимными переходами с обменом аминокислот, белков, жиров, органических кислот и других соединений. За счет пировиноградной кислоты или других промежуточных продуктов цикла анаэробного распада углеводов может синтезироваться глюкоза, а следовательно, и другие углеводы таким образом пировиноградная кислота связывает в [c.164]

    Роль глюкозы в жизни организмов велика она является тем веществом, при окислении которого в тканях освобождается энергия, необходимая для жизнедеятельности организмов. [c.172]

    Образование этилового спирта дрожжами —это анаэробный процесс, но для их размножения нужен кислород. В следовых количествах кислород, возможно, нужен и для поддержания жизнедеятельности клеток, образующих спирт. В ходе метаболизма осуществляется сложная регуляция образования этанола из глюкозы. Сам процесс метаболизма, жизнеспособность клеток, их рост, деление и образование спирта зависят от концентрации субстрата, кислорода и конечного продукта (спирта) Большую роль в увеличении выхода сыграл отбор штаммов дрожжей, более устойчивых к повышенным концентрациям как субстрата, так и спирта. [c.68]

    Хотя анаэробный распад углеводов с образованием молочной кислоты энергетически и менее выгоден, чем окисление до СОг и Н2О, тем не менее анаэробное расщепление гликогена или глюкозы играет очень важную роль в жизнедеятельности человека и животных. Этот процесс обеспечивает возможность выполнения организмом тех или иных физиологических функций и в условиях недостаточного снабжения тканей и органов кислородом. [c.249]

    Хотя анаэробный распад углеводов с образованием молочной кислоты энергетически и значительно менее выгоден, чем окисление до СО и HgO, тем не менее анаэробное расщепление гликогена или глюкозы играет очень важную роль в жизнедеятельности человека и животных. Этот процесс 262 [c.262]

    Фосфорнокислые эфиры глюкозы и фруктозы были выделены как из животных, так и из растительных организмов. Оказалось, что эти эфиры играют исключительно важную роль в жизнедеятельности организмов, являясь промежуточными продуктами расщепления углеводов при брожении и гликолизе (расщеплении полисахарида гликогена до молочной кислоты, происходящем во всех клетках животных организмов), а также при синтетических процессах (например, при образовании крахмала). [c.570]

    Глюкоза играет исключительно важную роль в энергетическом обмене биосферы. В процессе фотосинтеза происходит преобразование лучистой энергии солнца в химическую энергию связей образующейся молекулы глюкозы, которая затем используется всеми живыми организмами для обеспечения своей жизнедеятельности  [c.19]

    Слол<ные углеводы, поступающие в организм вместе с пищей, под действием ферментов распадаются в кишечнике на различные моносахариды, которые всасываются и разносятся током крови по все,му телу. Осо-бенно большую роль в жизнедеятельности организма играет глюкоза (стр. 228), образующаяся из различных сахаров и гликопротеидов. Поступая с током крови в печень, часть глюкозы подвергается сложному процессу окисления до двуокиси углерода и воды, а освобождающаяся при это.м энергия расходуется клетками печени при многочисленных протекающих в ней химических реакциях. Часть глюкозы превращается в печени в жиры, а часть-г в полисахарид гликоген (животный крахмал). [c.449]

    Большую биологическую роль в процессе жизнедеятельности организма выполняет хром. Недостаток у человека трехвалентного хрома вызывает нарушение переносимости глюкозы. К повышенному выведению хрома из организма приводит значительное количество сахара в питании. Усиливают недостаточность хрома такие факторы, как частая беременность, диабет, возрастные изменения. [c.19]

    Хром в природе. Хром необходим для жизнедеятельности человека и животных в очень малых количествах. В человеческом теле содержится примерно 6 мг хрома, распределенного между многими тканями. Установлено его участие в метаболизме глюкозы и холестерина, по биологической роли он родственен инсулину. Биологически активное соединение хрома охарактеризовано как фактор толерантности глюкозы. Потребность в этом элементе составляет 500—200 мкг в сутки. Участие хрома в обмене веществ в растениях не доказано. [c.541]

    Ряд олигомеров а-аминокислот играет значительную роль в жизнедеятельности организма и некоторые из них применяют в медицинской практике. Так, метиловый эфир дипептида L-аспарагил-Ь-фенилаланина (аспартат, аспартам) используют при диабете как малокалорийный заменитель сахара (в 150 раз слаще глюкозы). Его производят синтетическим или микробиологическим путем конденсацией аспарагина и метилата фенилаланина  [c.38]

    Гидроксикислоты содержат в молекуле функциональные группы двух типов-гидроксильную и карбоксильную. В зависимости от положения первой относительно второй различают а-, Р-, у-и 5-гидроксикислоты. Простейшая-гликолевая (гидроксиуксус-ная) кислота является а-гидроксикислотой. Она встречается во многих растениях (виноград, свекла). Молочная (а-гидроксипро-пионовая) кислота - продукт жизнедеятельности ряда бактерий ее используют в качестве консервирующего средства. Молочная кислота накапливается в мышцах как продукт усвоения глюкозы. Во многих плодах найдены яблочная (гидроксиянтарная) и винная (дигидроксиянтарная) кислоты. Некоторые гидроксикислоты играют важную роль в биохимических процессах. [c.433]


    Витамины-это органические вещества, которые в следовых количествах присутствуют в большинстве живых организмов и необходимы для их нормальной жизнедеятельности. Однако некоторые организмы не способны синтезировать эти вещества и должны получать их из внешних источников. Ббльшая часть водорастворимых витаминов представляет собой компоненты различных коферментов или простетических групп ферментов, играющих важную роль в клеточном метаболизме. Тиамин (витамин Bj)- активный компонент тиаминпирофосфата, кофермента, выполняющего функцию промежуточного переносчика ацетальдегида в ходе ферментативного декарбоксилирования пирувата-основного продукта распада глюкозы в клетках. Рибофлавин (витамин В2) входит в состав коферментов флавинмононуклеотида (FMN) и флавинадениндинуклеотида (FAD), выполняющих роль водород-переносящих простетических групп в определенных ферментах, катализирующих реакции окисления. Никотиновая кислота является компонентом никотин-амидадепиндинуклеотидов (NAD и NADP), которые служат переносчиками гидрид-ионов при функционировании ряда дегидрогеназ. Пантотеновая кислота [c.298]

    Почти все низкомолекулярные фенолы встречаются в живых клетках в связанной форме. Эта связанная форма обычно означает наличие связи между гидроксильной группой фенола и молекулой глюкозы простейшая форма такой комбинации — фенил-р-п-глюкозид (I). Фенольные 0-гликозиды — наиболее обширная группа известных гликозидов растений, причем уже выделено несколько сот комбинаций агликонов и сахаров. То, что фенолы почти всегда встречаются в связанной форме, обычно в форме гликозидов, в активно мета-болнзирующих тканях, заставляет предполагать, что присоединение сахаров к фенолам играет важную роль для жизнедеятельности растений достаточно вспомнить, что гликозиды обладают большей растворимостью в соке и более подвижны, чем исходные фенолы. Образование гликозидов может быть способом накопления фенолов в растении в форме, в которой они не мешают другим более важным клеточным механизмам. [c.109]

    Углеводы играют важную роль в жизнедеятельности человека и в технике. Углеводами являются свекловичный сахар С12Н22О11, виноградный сахар, или глюкоза, СеНггОе, крахмал и целлюлоза, состав которых выражается формулой (СбНюОз) . Они являются одним из основных продуктов питания, составляя в среднем до 70% всей употребляемой человеком пищи. [c.292]

    Из других исследований асимметрической адсорбции интересно отметить попытку осуществления избирательной адсорбции на кремневой кислоте, выделенной из живых организмов. Известно, что кремневая кислота играет большую роль в жизнедеятельности организмов [260—263]. Показано наличие избирательной адсорбции на кварце среди ряда сахаров (галактоза, глюкоза, ара-биноза) [264]. [c.53]

    Попытка Сойера [7] перейти путем экстраполяции скорости распада от температур 450—500° к температуре 150° оказалась несостоятельной, так как при изменении температуры меняется направление процесса. После открытия Бастином [8] и Гинзбург-Карагичевой [9] бактерий в в нефти и нефтяных водах значительное развитие получили взгляды на решающую роль бактериальных процессов нефтеобразования. Как показала Родионова [10], в результате жизнедеятельности бактерий наблюдаются омыление жиров, переход образовавшихся жирных кислот в непредельные, распад высших жирных кислот с образованием низших, полимеризация жирных кислот и рост количества неомыляемых. Под действием бактерий происходят также гидролиз целлюлозы, распад глюкозы до низших спиртов и жирных кислот, окисление углеводородов. В работах Цобелл [И—13] и Янковского указывается на возможность образования под действием десульфирующих бактерий углеводородов алифатического ряда (с числом атомов углерода от 10 до 25) из жирных кислот. В работах Архангельского [14], Порфирьева [15] и других прои -хождение нефти объясняется возможностью образования нефти под действием бактерий. Однако эти работы не затрагивают основных реакций образования составляющих нефть продуктов — крекинга углеводородов, восстановления непредельных соединений, гидроксильных, карбонильных и карбоксильных групп, и одни бактериальные процессы явно недостаточны для утверждений об их решающей роли в нефтеобразовании. [c.261]


Смотреть страницы где упоминается термин Глюкоза роль в жизнедеятельности: [c.445]    [c.133]    [c.133]    [c.83]    [c.319]   
Органическая химия (1968) -- [ c.445 , c.448 ]

Органическая химия 1971 (1971) -- [ c.449 , c.451 ]

Органическая химия Издание 6 (1972) -- [ c.373 , c.374 ]




ПОИСК







© 2025 chem21.info Реклама на сайте