Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Клетка метаболизм

Рис. 18.8. Схематическая диаграмма некоторых превращений свободной энергии в процессе метаболизма живой клетки. Окисление глюкозы с образованием СО и Н2О приводит к выделению свободной энергии. Выделившаяся свободная энергия идет на превращение АДФ в более энергоемкое вещество АТФ. Молекулы АТФ затем используются по мере необходимости как источник энергии для превращения простых молекул в более сложные составные части живой клетки. Когда молекула АТФ выделяет свободную энергию, она превращается в молекулу АДФ. Рис. 18.8. <a href="/info/96413">Схематическая диаграмма</a> некоторых <a href="/info/502431">превращений свободной энергии</a> в <a href="/info/1418567">процессе метаболизма</a> <a href="/info/477428">живой клетки</a>. <a href="/info/16188">Окисление глюкозы</a> с образованием СО и Н2О приводит к <a href="/info/71519">выделению свободной</a> энергии. Выделившаяся <a href="/info/2431">свободная энергия</a> идет на превращение АДФ в более энергоемкое вещество АТФ. Молекулы АТФ затем используются по <a href="/info/1743590">мере необходимости</a> как <a href="/info/98823">источник энергии</a> для <a href="/info/1326526">превращения простых</a> молекул в более <a href="/info/1081104">сложные составные части</a> <a href="/info/477428">живой клетки</a>. <a href="/info/1460606">Когда молекула</a> АТФ выделяет <a href="/info/2431">свободную энергию</a>, она превращается в молекулу АДФ.

    Отсутствие кислорода в молекуле и гидрофобность н-парафинов предполагает адаптацию микроорганизмов, т. е. синтез соответствующих ферментных систем. Адаптация клетки включает индукцию микросомальной ферментной системы с цитохромом Р-450 и сопряженных с ней путей метаболизма. Биохимические исследования [271] подтвердили накопление цитохрома Р-450 при утилизации н-парафинов, но до сих пор не известны факторы, определяющие меха-низ.м и биохимические закономерности адаптационных процессов, протекающих в течение лаг-фазы и определяющие ее продолжительность [c.100]

    Для любого процесса в живом организме необходима энергия, которая получается при протекании химических реакций внутри клетки. Основу биохимических процессов составляют химические превращения, в частности реакции окисления и восстановления. Биологическое окисление служит, таким образом, основным источником энергии для ряда внутренних биологических изменений. Многие из протекающих при таком окислении реакции заключаются в сжигании компонентов пищи, например сахаров или липидов, что дает энергию, используемую затем для осуществления таких важных процессов л<изнедеятельности, как рост, размножение, поддержание гомеостаза, мускульная работа и выделение тепла. Эти превращения включают также связывание кислорода дыхание — это биохимический процесс, в результате которого молекулярный кислород восстанавливается до воды. При метаболизме энергия сохраняется аденозинтрифосфатом (АТР), богатым энергией соединением, которое, как известно, служит универсальным переносчиком энергии. [c.14]

    Другим типом лекарственных средств, применяемых в терапии злокачественных опухолей, являются антиметаболиты, действие которых основано на принципе структурной аналогии с естественными элементами метаболических процессов. Таким образом, речь идет о веществах, очень похожих по структуре иа нормальные метаболиты (например, их молекулы содержат Р вместо Н, 8 вместо О или ЫН вместо О) и встраивающихся вместо них в сложные соединения, что приводит в дальнейшем к блокированию определенных механизмов и повреждению клеток. Поскольку метаболизм опухолевых клеток протекает намного быстрее, чем метаболизм здоровых клеток, то опухолевые клетки повреждаются в большей степени. [c.319]

    Кислородсодержащие гетероциклы входят в состав важнейших молекулярных биорегуляторов — простагландинов, осуществляющих контроль за физиологическими функциями организма (деятельностью нервной системы, метаболизмом клетки, воспалительными процессами и др.)  [c.332]


    Биолог. Там, где интенсивность метаболизма высока, их больше, а где низка - меньше. Так, например, в клетке печени может быть до 2500 митохондрий, в клетке почки - около 300, у сперматозоида - 20-25, а у зрелых эритроцитов их нет вовсе [Свенсон, Уэбстер, 1980 Кемп, Арме, 1988 идр]. [c.36]

    Физик. Это те удивительные создания, которые живут в клетках организма и производят АТФ из АДФ, обеспечивая энергией все процессы метаболизма, не так ли Помнится, мы говорили о них в конце нашей первой беседы. [c.54]

    Нуклеиновые кислоты — высокомолекулярные биополимеры, обнаруженные во всех типах клеток. Структурными единицами нуклеиновых кислот являются мононуклеотиды, состоящие из гетероциклических азотистых оснований (пуриновых и пиримидиновых), пентоз и фосфорной кислоты. Нуклеиновые кислоты делятся на два типа рибонуклеиновые (РНК) и дезоксирибонуклеиновые (ДНК). РНК и ДНК различаются особенностями химического строения входящих в них пиримидиновых оснований и пентоз, локализацией в клетке и функциональным назначением в клеточном метаболизме. [c.161]

Рис. 1.2. Упрощенная структурная схема метаболизма клетки Рис. 1.2. <a href="/info/1388009">Упрощенная структурная</a> <a href="/info/98574">схема метаболизма</a> клетки
    Но окисление полиненасыщенных кислот в липидах вовсе не представляет собой необходимого для метаболизма этапа и этот процесс, протекающий легко и ведущий к накоплению гидроперекисей,, несомненно, вреден для клетки  [c.320]

    Таким образом действие мембраны отнюдь не исчерпывается механическим разделением пространства на биологическую область — клетку — и окружающую среду мембраны активно участвуют в процессах метаболизма, а также и в передаче нервных импульсов. [c.389]

    Внутри микробной клетки происходит ряд биохимических превращений питательных веществ, приводящих к синтезу новых клеточных компонентов (анаболические превращения) и к образованию низкомолекулярных соединений, включая продукты обмена или отходы метаболизма (катаболические превращения). Метаболический путь или последовательность внутриклеточных превращений характеризуют клетку как сложную систему с большим числом взаимосвязанных ироцессов, аналогичных стадиям крупного технологического производства. Так, согласно схеме на рис. 1.1, посту- [c.8]

    Согласно развиваемому системному подходу к анализу сложной совокупности процессов на микро- и макроуровнях, к эффектам, определяющим поведение системы на макроуровне, относится массопередача. Массообменные процессы в биореакторе непосредственно влияют на рост микроорганизмов, определяя скорость транспорта питательных веществ к клеткам и отвод продуктов метаболизма в среду в количестве, соответствующем стехиометрическим коэффициентам. Наибольший практический интерес, с точки зрения ограничения скорости процесса ферментации, представляют такие элементы питания, как кислород и углеродсодержащий субстрат, учитывая большую удельную потребность в них клеток, низкую растворимость в культуральной жидкости и присутствие в ферментационной среде в виде дисперсных фаз. [c.87]

    Представление об основных биохимических процессах, происходящих в клетках, на примере сапрофитных микроорганизмов с аэробным типом питания [2], дает упрощенная схема метаболизма на рис. 1.2. Даже в таком упрощенном виде схема позволяет оценить многообразие и сложность внутриклеточных процессов, насчитывающих несколько тысяч реакций, в результате которых синтезируются клеточные вещества. Математическое описание всей совокупности данных реакций и использование такой модели для практических целей представляет собой чрезвычайно сложную задачу. Наряду с микробиологическими процессами, направленными на образование биомассы микроорганизмов или ценных продуктов клеточного метаболизма большую роль в БТС занимают процессы биологической очистки, протекающие с участием бактериальных клеток по следующей трофической схеме органические загрязнениям бактерии-> простейшие. В процессе биологической очистки сточных вод, содержащих органические и минеральные вещества, формируется биоценоз активного ила, включающий бактерии, простейшие и многоклеточные организмы. В процессе потребления органических загрязнений происходит интенсивный рост бактерий и ферментативное окисление органических веществ. По мере удаления из среды питательных веществ происходит эндоген- [c.10]

    Можно, наконец, рассмотреть и еще один — также биологический — аспект понятия о повторяющемся звене, связанный с взаимодействием готовой полисахаридной цепи с другими макромолекулами в живых системах. Речь в данном случае идет о том, каков минимальный фрагмент цепи, воспринимаемый другими молекулами или системами (назовем их рецепторами) как характерный признак данного полисахарида. Сюда относится широкий круг феноменов, таких, как иммунные реакции организма,. сортировка макромолекул в клетке и в организме, преодоление клеточных барьеров, метаболизм полисахаридов и т. д. [c.30]


    В биологии существование термодинамического сопряжения необходимо для обеспечения возможности использования живыми организмами энергии, выделяемой в реакциях клеточного метаболизма. Необратимые химические процессы в клетке являются причиной деградации энергии Гиббса системы в теплоту и приводят к диссипации (рассеянию) энергии. Однако наличие сопряжения таких химических процессов с реакциями ассими-дяции пищевых веществ в клетке частично предотвращает эти потери энергии и тем самым обеспечивает возможность развития или жизнедеятельности клетки и запасания энергии, выделенной в ходе самопроизвольных метаболических реакций, в форме химических связей И клеточных структур живого организма. При этом скорость общего изменения энтропии для сопряжен- [c.302]

    Уровень цАМФ в клетке определяет многие процессы ее метаболизма. Синтез цАМФ катализирует аденилатциклаза — сложный мем- [c.377]

    В целом, превращения веществ в клетке - метаболизм - можно разделить на три основные группы катаболизм (распад), амфи-болизм (промежуточный обмен) и анаболизм (синтетическая составляющая метаболизма) (см. рис. 15.2). [c.449]

    Эти соединения не обладают заметным непосредственным фармакологическим действием, но известны своим замедленным действием, сопровождаемым избирательностью в отношении пролиферирующих тканей, а именно кроветворных клеток костного мозга и лимфатических тканей, слизистой оболочки кишок, зародышевых клеток, зародышей и опухолей. Менее часто избирательно поражаются непролиферирующие клетки. Метаболизм соединений протекает быстро и часто идет далеко. [c.245]

    A. Нет. В la ZT-клетках метаболизм лактозы должен регулироваться нормально. [c.75]

    Эволюция живого мира в течение геологического времени приводит к расширению круга таксонов, к увеличению разнообразия форм и замене одних форм другими. Отмечаются и различия в биохимическом составе организмов, стоящих на различных ступенях генетической лестницы, несмотря на единство биохимического плана строения живых организмов. Органические компоненты живых веществ представлены главным образом белками, жирами, углеводами и построены из атомов углерода, водорода, кислорода, азота, серы, фосфора. Клетки живых организмов и растений используют эти элеме+iTbi в качестве источника химической энергии в ходе метаболизма. Распад химических веществ в клетках различных животных осуществляется по единому плану. Однако имеется и ряд различий в биохимическом составе организмов, обусловленных как эволюцией живого вещества в фанерозое, так и различием условий жизни в разных бассейнах в одно и то же геологическое время. [c.188]

    Нуклеиновые кислоты, составляющие ДНК (молекулу, контролирующую воспроизводство клсгтки и синтез белков), могут повреждаться двумя способами. Меньшую оп.1снссть представляют мутации, изменения в структуре ДНК, приводящие к синтезу новых белков. Большинство мутаций убивает клетку. Если мутация затронула сперматозоид или яйцеклетку, изменение может проявиться в ниде дефектов потомства. Некоторые мутации вызывают рак — неконтролируемый рост и метаболизм клеток. Если же повреждены многие ДНК во м1югих клетках, жизненно важные белки не смогут больше образовываться и поск дует немедленная смерть. В табл. У.Ю приведен список факторов, определяющих степень радиационного биологического поражения. Табл. У. 11 показывает биологическое действие возрастающих доз радиации. [c.353]

    Врач. Ну так вот. Вы решили заняться собой и однажды утром сделали зарядку. Что произошло с вашим организмом На какое-то время скорость кровотока повысилась, и если сразу после зарядки вы измерите содержание глюкозы в крови, то оно, наверняка, немного понизится. Что же касается жизненной емкости легких и массы вашего тела, то после одного занятия, как вы прекрасно понимаете, они практически не изменятся. Совсем другое дело, если вы зарядку станете делать ежедневно да еще ежедневно будете совершать прогулки на свежем воздухе. Словом, существенно измениге свой образ жизни. Тогда через несколько месяцев у вас заметно возрастут потребление кислорода тканями тела, интенсивность метаболизма, число митохондрий в клетках, а значит, и ваш Параметр Подобия повысится. Вот теперь, в полном соответствии с (4.32), у вас уменьшится содержание жира в теле, увеличится жизненная емкость легких, снизится содержание в крови глюкозы и холестерина, а также понизится уровень очень опасных для организма аутоиммунных процессов (см. рис. 4.7). [c.96]

    Биолог. Круг их очень широк, что хорошо видно, например, из популярной книги К. Шмидта-Ниельсена [1987], в которую вошли главные результаты его многолетних исследований. В ней проанализированы различные закономерности в ряде организмов от мыши до слона и убедительно показано, что более крупные организмы просто содержат больше клеток, а сами клетки соответствующих органов и тканей примерно одинаковы у разных организмов. Кроме того, у всех млекопитающих интенсивность метаболизма и другие физиологические характеристики статистически связаны с массой тела, а продолжительность разных физиологических процессов в организме - с длительностью сердечного цикла. Так, и у мьппи, и у человека, и у слона происходит примерно одинаковое число сердечных сокращений (около 4,5) за каждый дыхательный цикл. Поэтому сердечный цикл К. Шмидг-Ниельсен предлагает рассматривать как естественный масштаб времени для разных физиологических процессов, или как "физиологическое время". [c.19]

    Биолог. Есть, Это митохондрии - как бы миниатюрные энергетические станции клетки. Они производят аденозинтрифосфат (АТФ) - соединение, богатое энергией, которое, превращаясь в аденозиндифосфат (АДФ), отдает ее процессам, требующим затрат энергии. Затем АДФ в митохондриях снова превращается в АТФ, и так непрерьшно обеспечиваются энергией все процессы метаболизма в клетках организма.,. [c.36]

    Биолог. Потому, что для метаболизма в клетке часто требуются гораздо меньшие порхщи энергии, чем те, которые вьщеляются при окислении молекул глюкозы. Если бы лишняя энергия не запасалюь в форме АТФ, она неизбежно превращалась бы в тепло и организм вряд ли мог бы существовать... [c.36]

    Биолог. Да, Его называют еще единой энергетической валютой, так как он используется во всех живых организмах и растениях. Видимо, это дань ставшей очень модной сейчас экономике,,. Интересно, что по многим свойствам митохондрии очень похожи на бактерии их характерные размеры составляют несколько десятых микрометра, митохощфии имеют собственную ДНК и могут делиться самостоятельно, независимо от деления самой клетки, но "подстраиваясь" под ее потребности в энергии. Поэтому плотность митохондрий в клетках организма соответствует средней интенсивности процессов метаболизма [Христолюбова, 1977, Лузиков, 1980 Кемп, Арме, 1988], [c.36]

    Исследование взаимосвязи путей метаболизма биологически активных соединений представляет научный и практический интерес. В метаболизме природных липидов процессы ферментативного окисления жирных кислот непосредственно влияют на содержание полиненасыщенных жирных кислот (ПНЖК) в клетке. Липоксигеназы (ЛОГ) КФ 1.13.11.12 относятся к классу железосодержащих оксигеназ и катализируют стереоспеци-фическое окисление ПНЖК, молекулы которых содержат хотя бы один 1,4 [c.15]

    К основным питательным веществам, используемым микроорганизмами в качестве исходного сырья для биосинтеза, следует отнести углерод, азот и фосфор. При аэробном культивировании микроорганизмов в энергетическом метаболизме клетки непосредственное участие принимает кислород, выполняя роль акцептора электронов. С участием молекулярного кислорода происходит окисление углеводородного субстрата с последовательным образованием надвинного спирта, а затем жирной кислоты. При анаэробном процессе микроорганизмы получают энергию в результате окисления, когда акцепторами электронов выступают неорганические соединения. У фототрофов (фотосинтезирующих бактерий, водорослей) в качестве источника энергии служит энергия солнечной радиации. [c.10]

    Биолог. Я-параметр связан с числом и активностью митохонЕфий в клетках организма (см. беседу 1). Поэтому к внутренним факторам мы можем отнести гормональный фон, управляющий интенсивностью всех процессов метаболизма. Он же определяет активность, внутреннюю структуру, а также плотность митохондрий в клетках организма [Христолюбова, 1977 Лузиков, 1980]. [c.99]

    Как известно, электрон является легчайшей и чрезвычайно активной частицей. Роль протона и атома водорода в эволюции химических систем, вероятно, еще более значительна. Протоны участвуют в синтезе ядер элементов, определяя (косвенно) все стадии жизни звезд, и в важнейших стадиях метаболизма в клетках их перенос от молекул органических соединений к кислороду лежит в основе энергетики организма. [c.145]

    Технологическую основу БТС составляет процесс культивирования микроорганизмов — ферментация. При этом биофаза потребляет продукты питания — минеральную питательную среду и субстрат, перерабатывает их клеткой и выделяет в среду метаболиты. В результате обмена веществ происходит синтез внутриклеточных веществ, рост клетки (увеличение биомассы) и ее развитие (морфологические и физиологические изменения). Рост и развитие популяции микроорганизмов являются результатом сложнейшей совокупности физиологических, биохимических, генетических и других внутриклеточных процессов. Кроме того, важное место занимают процессы физической природы — перенос массы, энергии, количества движения из окружающей среды к клеткам и обратно. Таким образом, процесс ферментации можно рассматривать как определенным образом организованное развитие популяции микроорганизмов во взаимодействии с окружающей средой (ферментационной средой). Ферментационная среда, содержащая микробные клетки, компоненты минерального питания, субстрат, продукты клеточного метаболизма представляет собой многофазную систему, в которой протекают физиолого-биохимические и физико-химиче-ские процессы. К особенности данной среды относится сложный характер взаимодействий между ее составляющими. [c.51]

    При выработке иммунного ответа клеточные рецепторы реагируют на углеводные детерминанты макромолекулы антигена. Обратным примером может служить взаимодействие клеток с макромолекулами холерного токсина. Последний представляет собой белок, в состав которого входят две высокомолекулярные пептидные субъединицы. Одна из них ответственна за первичное взаимодействие с клетками организма-хозяина, а другая — за токсический эффект. Было установлено, что рецептором на поверхности клеток, осуществляющим узнавание молекулы токсина и связывание с ним, является гликолиПид — ган-глиозид Gmi, в молекуле которого к липидной части присоединен олигосахаридный фрагмент, содержащий остаток сиаловой кислоты. После присоединения токсина к ган-глиозиду от первого отщепляется токсическая субъединица, под дейстием чего происходит ряд изменений в активности ферментов клетки, в первую очередь активация адени-лат-циклазы, а это в конечном итоге приводит к крупным нарушениям клеточного метаболизма и гибели клетки. [c.158]

    В результате процессов тепломассообмена и гидродинамического взаимодействия к клеткам поступают необходимые для роста и развития микроорганизмов компоненты питания. Выделяемые в среду продукты л етаболизма могут оказывать непосредственное влияние на кинетические закономерности роста клеток, например эффекты ингибирования скорости роста. Продукты клеточного метаболизма (от альдегидов и кетонов до веществ белкового [c.51]

    Особенности массообменных эффектов в БТС связаны с процессами ферментации, когда одновременно с ростом и развитием популяции микроорганизмов осуществляется перенос массы (транспорт питательных веществ и продуктов метаболизма) и энергии (поглощение и выделение тепла при биохимических превращениях в многофазной системе). Модели, описывающие процессы массообмена в биохимическом реакторе, являются макросоставляющими общей математической модели биореактора в целом. Скорость потребления питательных веществ в процессе роста микроорганизмов определяется, с одной стороны, скоростью их биохимического превращения, а с другой,— скоростью переноса веществ к клеткам. [c.82]

    При образовании полисахаридов в клетках млекопитающих из фруктозы образуется фруктозо-6-фосфат, затем глюкозамин-6-фосфат и в конечном итоге — К -ацетилман-нозамин, иОР-Ы-ацетилглюкозамин, иОР-Ы-ацетилгалак-тозамин. Производные моносахаридов активно участвуют в метаболизме живой клетки, стимулируя процессы фотосинтеза, обеспечения клетки энергией, детоксикации и вывода ядовитых веществ, биосинтеза ароматических соединений, в том числе и аминокислот тирозина и фенилаланина, образования сложных биополимеров (полисахаридов, гликопротеинов, гликолипидов, нуклеиновых кислот). [c.127]

    Введение меркаптогруппы привело к получению препарата 6-меркаптопурина (284), эффективного при остром лейкозе. Его лечебное действие связано со способностью участвовать в метаболизме пуриновых оснований, тормозя их биосинтез в опухолевых клетках. [c.163]


Смотреть страницы где упоминается термин Клетка метаболизм: [c.141]    [c.119]    [c.9]    [c.43]    [c.106]    [c.195]    [c.19]    [c.31]    [c.224]    [c.102]    [c.53]    [c.500]    [c.100]   
Молекулярная генетика (1974) -- [ c.58 , c.119 ]




ПОИСК





Смотрите так же термины и статьи:

Метаболизм



© 2025 chem21.info Реклама на сайте