Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окислительный распад аминокислот

    Иной путь окислительного распада наблюдается для таких аминокислот как лейцин, изолейцин, фенилаланин, тирозин и триптофан. При окислении в печени лейцина и изолейцина, начинающемся также с окислительного дезаминирования, образуется ацетоуксусная кислота. Фенилаланин окислйется вначале в тирозин, который далее подвергается своеобразному окислительному распаду также с образованием ацетоуксусной кислоты или аланина и ацетоуксусной кислоты. Приводим путь окислительного распада некоторых аминокислот. Обмен этих аминокислот может "быть связан как с реакциями цикла трикарбоновых кислот, так и с обменом жиров ( через ацетоуксусную кислоту). Схемы приведены на стр. 193, 196, 197. [c.194]


    A. Окислительное дезаминирование — распад аминокислоты на кетокислоту и аммиак [c.469]

    Реакции переаминирования и дезаминирования являются теми р еакциями обмена, которые лежат как на пути окислительного распада аминокислот, так и синтеза некоторых из них из безазотистых продуктов обмена и аммиака. [c.194]

    Во второй том вошли материалы по биоэнергетике и метаболизму клетки. Рассмотрены роль глюкозы в биоэнергетических процессах, цикл лимонной кислоты, электронный транспорт, окислительное фосфорилирование, регуляция образования АТФ, окисление жирных кислот в тканях животных, окислительный распад аминокислот, биосинтез углеводов, липидов, нуклеотидов, аминокислот, а также фотосинтез. [c.372]

    Первой ступенью в этих цепях реакций является переаминирование, приводящее к образованию а-кетокислот эти реакции были показаны в ряде систем (табл. 22). Остальные этапы аналогичны реакциям окисления жирных кислот и реакциям окислительного распада аминокислот с разветвленной цепью. [c.366]

    В живой ткани растения аммиак может образоваться при окислительном распаде аминокислот  [c.447]

    В клетке постоянно происходят образование и распад белка, а также неиспользованных для синтеза аминокислот. В результате окислительного дезаминирования аминокислот и других азотистых веществ образуется токсичный для клеток живого организма аммиак. Но свободного аммиака в тканях очень мало. Часть его поглощается в процессе восстановительного аминирования кетокислот, а часть включается в состав аммонийных солей, удаляемых из организма через почки. Но этот путь не приводит к обезвреживанию аммиака, так как соли диссоциируют с образованием катиона ЫН+, вредного для организма. [c.133]

    Биологическая роль. Витамин С, вероятнее всего, участвует в окисли-тельно-восстановительных процессах, хотя до сих пор не выделены ферментные системы, в состав простетических групп которых он входит. Предполагают, что витамин С участвует в реакциях гидроксилирования пролина и лизина при синтезе коллагена, синтезе гормонов коры надпочечников (кортикостероидов), аминокислоты триптофана и, возможно, в других реакциях гидроксилирования. Имеются доказательства необходимости участия витамина С в окислительном распаде тирозина и гемоглобина в тканях. [c.239]

    Смесь амилового, изоамилового, бутилового и других спиртов называют сивушными маслами. Сивушные масла накапливаются при спиртовом брожении как побочные продукты, образующиеся при распаде белков и дальнейшем окислительном дезаминировании аминокислот. [c.198]


    На рис. 24.8 представлены пути окислительного распада аминокислот с разветвленной цепью — кетогенной аминокислоты лейцина, а также валина и изолейцина, являющихся одновременно кетогенными и гликогенными. В процессе метаболических превращений валина происходит образование сукцинил-КоА, который через цикл ТКК и при участии некоторых других ферментов может превратиться в пируват, а затем в глюкозу. В то же время лейцин дает непосредственно кетопродукт ацетоацетат и, кроме того, аце-тил-КоА, из которого также может образовываться ацетоацетат. Изолейцин дает ацетил-КоА и пропионил-КоА. Через метилмалонил-КоА пропи-онил-КоА превращается в сукцинил-КоА, и, следовательно, его надлежит считать гликогенным, а так как ацетил-КоА — кетогенное соединение, то изолейцин можно отнести одновременно к обеим категориям. [c.379]

    Следует отметить, что окислительный распад фенилаланина и тирозина представляет особый интерес в связи с тем, что многие врожденные нарушения белкового обмена связаны именно с обменом этих аминокислот, например наследственная болезнь фенилкетонурия (фенилпировиноградная олигофрения). Причиной этого заболевания является потеря способности организма синтезировать фермент фенилаланин-4-монооксигеназу, катализирующую пре-врашение фенилаланина в тирозин. Это приводит к накоплению фенилаланина в тканях, а следовательно, и продуктов его трансаминирования фенилпировиноградной и фенилуксусной кислот, оказывающих токсическое действие на организм, и в первую очередь на ЦНС, вызывая расстройство психической деятельности человека. [c.382]

    Окислительный распад, а. С такими окислительными агентами, как хлорамин Т, гипохлориты щелочных металлов, перекись водорода, персульфаты и т.д., аминокислоты дают непосредственно низшие альдегиды однако реакция может приводить и к нитрилам [c.382]

    Потребовалось много времени, чтобы разрешить этот вопрос. Эмбден и Кнооп установили, что при пропускании растворов аминокислот через переживающую печень аминокислоты превращаются в соответствующие кетокислоты, причем образуется аммиак. Это нашло подтверждение в опытах со срезами печени, почек и кишечника. Таким образом, стало ясно, что в тканях распад аминокислот идет окислительным путем, по уравнению 11. Установленное в некоторых случаях образование оксикислот является результатом последующего восстановления кетокислот. [c.330]

    В тканях животного организма разрушение (распад) аминокислот идет окислительным путем (б).  [c.205]

    Первая стадия является ферментативной и завершается образованием неустойчивого промежуточного продукта (иминокислота), который на второй стадии спонтанно без участия фермента, но в присутствии воды распадается на аммиак и а-кетокислоту. Следует указать, что оксидазы аминокислот (Ь- и О-изомеров) являются сложными флавопротеинами, содержащими в качестве кофермента ФМН или ФАД, которые выполняют в этой реакции роль акцепторов двух электронов и протонов, отщепляющихся от аминокислоты. Оксидазы Ь-аминокислот могут содержать как ФМН, так и ФАД, а оксидазы О-аминокислот-только ФАД в качестве простетической группы. Схематически реакции окислительного дезаминирования аминокислот с участием коферментов могут быть представлены в следующем виде  [c.432]

    Из схемы 1 видно, что только три аминокислоты — аланин п аспарагиновая и глутаминовая кислоты — образуются путем аминирования соответствующих сб-кетокислот. Обратная реакция, дезаминирование аминокислот с образованием й-кетокислот, является первой ступенью распада природных аминокислот. Соответствующие а-кетокислоты были выделены в виде динитро-фенилгидразонов [99]. Окислительное дезаминирование аминокислот происходит в срезах печени и почек. Не только природные [c.377]

    Эта реакция является начальной стадией цикла трикарбоновых кислот, в ходе которого ацетат окисляется, а щавелевоуксусная кислота регенерируется. Так как ацетат служит продуктом окислительного распада жирных кислот, аминокислот и углеводов, то цикл Кребса является общим путем метаболизма для всех этих групп веществ. [c.157]

    Следует обратить внимание на тот факт, что уксусная кислота является одним из самых многочисленных продуктов обмена веществ в клетках и тканях, образующихся при аэробном распаде углеводов, жиров (глицерина и жирных кислот) и ряда аминокислот. Расчеты показывают, что при ежедневном приеме с нишей 400 г углеводов из них образуется 267 г уксусной кислоты (в виде ацетильного производного кофермента А) и /з углерода (углеводов) выделяется в виде углекислого газа. То же самое наблюдается и при окислительном распаде глицерина и жирных кислот. При ежесуточном приеме с пищей 100 г белка и 70 г жира из них образуется на определенном этапе распада около 100 г уксусной кислоты. Следовательно, ежесуточно в организме человека в среднем образуется около 370 г уксусной кислоты. Однако в организме она не накапливается и быстро подвергается дальнейшим превращениям. Длительное время исследователи не могли разгадать механизм превращения уксусной кислоты, так как свободная уксусная кислота очень медлен- [c.342]


    Большое значение в разнообразных процессах обмена в-в имеет ферментативное Д. Существует два типа подобных р-ций простое Д. (обратимая р-ция) и окислительное Д., в к-ром происходит сначала Д., а затем дегидрирование субстрата. По последнему типу в организме животных и растений осуществляется ферментативное Д. пировиноградной и а-кетоглутаровой к-т-промежуточных продуктов распада углеводов, жиров и белков (см. Трикарбоновых кислот цикл). Широко распространено также ферментативное Д. аминокислот у бактерий и животных. [c.19]

    Эта реакция является весьма важной в метаболизме пропионовой кислоты (точнее, пропиониол 8КоА), которая образуется при окислении жирных кислот с нечетным числом атомов углерода, боковой цепи холестерина, окислительном распаде аминокислот изолейцина, метионина и серина. [c.46]

    Кинетические измерения часто указывают на то, что реакции окисления, в присутствии энзимов, являются цепными процессами . Так, при малых концентрациях реакция обычно псевдомо-номолекулярна и идет со скоростью, пропорциональной концентрации окисляющегося метаболита. Но при высоких концентрациях достигается максимальная скорость, не зависящая от концентрации метаболита и постепенно падающая со временем но мере того, как коэнзим подвергается необратимому разрушению. Поскольку цепные реакции принадлежат в основном к гемолитическому типу (стр. 23), имеет смысл рассмотреть вопрос о возможности реакций со свободными радикалами в энзиматических системах. Свыше тридцати лет назад Дэкин указал, что перекись водорода является единственным из всех химических окислителей, который вызывает в жирах, углеводах и аминокислотах такие же процессы окислительного распада, как и энзимы. Поэтому он считал что перекисная теория окисления, выдвинутая Бахом и Энглером, применима к живым клеткам так же, как и к другим областям химии. [c.291]

    Анаэробные бактерии способны восстанавливать пролин в 5-амино-валерат [уравнение (8-34)], сопрягая эту реакцию с окислительным распадом другой аминокислоты (реакция Стикленда). [c.103]

    Приведенными примерами, вероятнее всего, не ограничиваются биологические функции тиамина. В частности, ТПФ участвует в окислительном декарбоксилировании глиоксиловой кислоты и а-кетокислот, образующихся при распаде аминокислот с разветвленной боковой цепью в растениях ТПФ является эссенциальным кофактором при синтезе валина и лейцина в составе фермента ацетолактатсинтетазы. [c.222]

    Изредка ацетофеноны и другие ацилбензолы выступают как продукты окислительной деградации более сложных соединений. В частности, важный биохимический процесс — распад аминокислоты триптофана — протекает [c.305]

    Пути окислительного распада отдельных аминокислот и их связь между собой глициноксидаза [c.193]

    Для тяжелого диабета характерно так же увеличение экскреции мочевины-основного конечного продукта азотистого обмена, образующегося при окислительной деградации аминокислот (разд. 19 14-19.16). Количество мочевины, вьще-ляемой больным в течение суток, служит мерой общего количества аминокислот, распавшихся окислительным путем, что в свою очередь отражает степень сбалансированности между потреблением белков и распадом тканевьа белков на протяжении суток. Концентрация мочевины в крови при диабете может достигать 25 мМ, т.е. примерно в 5 раз превышать уровень нормы (около 5 мМ). [c.774]

    Окислительное дезаминирование-наиболее распространенный тип распада аминокислот. Глутаминовая кислота дезаминируется глута-матдегидрогеназой до 2-оксоглутаровой кислоты. Реакция обратима и поэтому играет важнейшую роль в обмене аминокислот. Равновесие в сильной степени сдвинуто в сторону образования глутаминовой кислоты  [c.431]

    Подводя итог вышеизложенному, можно сказать, что при паде а-аминокислот из них образуется а-к е г и-к и слот а. Аминогруппы аминокислот при этом либо освобождаются в виде аммиак а, либо (главным образом) превращаются в мочевину (при этом половина азота проходит через стадию аммиака, а другая половина через стадию аспарагиновой кислоты). Аммиак и кетокислоты частично используются для ресинтеза аминокислот и для синтеза других азотистых веществ. Другая часть а-к етокислот путем декарбоксилирования укорачивается на один атом С и превращается в жирную кислоту, окислительный распад которой до СОз и НгО совершается путем (Ь-о кисления и при участии цикла трикарбоновых кислот. [c.343]

    Аспарагин и глютамин имеют также большое значение как резерв дикарбоновых кислот для осуществления реакции ферментативного пере-аминировапия. В процессе переаминирования участвуют не только свободные аспарагиновая и глютаминовая кислоты, но также аспарагин и глютамин, которые к тому же способны к взаимопревращению. Наконец, но данным В. А. Кретовича, амидная группа предохраняет аспарагиновую-и глютаминовую кислоты от окислительного распада. Дикарбоновые аминокислоты в значительных количествах входят в состав растительных белков, поэтому превращения этих аминокислот и их амидов играют существенную роль в азотном обмене у растений. [c.185]

    Окислительный обмен фенилаланина и тирозина особенно интересен в двух отношениях во-первых, многие заболевания, возникающие в результате вро депных нарушений обмена , связаны именно с этими превра-щепиямп и, во-вторых, ферменты, участвующие в обмене этих двух аминокислот, нуждаются иногда в совершенно необычных коферментах. Основные пути окислительного распада фенилаланина и тирозина показаны на фиг. 144. [c.451]

    Ввиду того что среди продуктов распада белка не известно ни одного однородного вещества, которое отщепляло бы альдегиды при перегонке в водном растворе, напрашивается вывод, что альдегиды образуются только при взаимодействии продуктов распада при высокой температуре. Среди реакций, протекающих с образованием альдегидов, в первую очередь надо иметь в виду открытое Штрекером окисление а-аминокислот аллоксаном. Аминокислоты окисляются за счет гидроксила воды с отщеплением аммиака и углекислоты и превращаются в предшествующие в гомологическом ряду альдегиды, а аллоксан восстанавливается освобождающимся водородом, образуя урамил. Последний затем конденсируется с избытком аллоксана и отп енленным аммиаком в мурексид. Аллоксан сам по себе является продуктом распада белка (хотя и не образующимся нормально). С другой стороны, согласно Траубе, и другие кетосо-единения дают ту же самую реакцию. Поэтому можно с большой вероятностью допустить, что при распаде белка на аминокислоты создаются те условия, которые необходимы для дальнейшего распада аминокислот по открытому Штрекером пути. Таким образом, если эрептон обладает способностью отщеплять альдегиды при перегонке, то это происходит потому, что он содержит еще наряду с а-аминокислотами такие вещества, которые поглощают освобождающийся при расщеплении воды водород. Мы имеем здесь дело с сопряженной окислительно-восстановительной реакцией, при которой аминокислоты окисляются за счет воды, а способные к восстано-плению вещества восстанавливаются. При обыкновенной температуре эта реакция протекает с неизмеримо малой скоростью, на что достаточно ясно указывает отсутствие реакции на альдегиды в холодных растворах эрен- [c.509]

    Ацетоуксусная кислота образуется не только в печени, но и в других органах, однако, во всех органах, за исключением печени, ацетоуксусная кислота образуется за счет ацетильного производного KoASH, возникающей, главныхМ образом, в результате окислительного распада углеводов и некоторых аминокислот. [c.319]

    В предыдущих главах основное внимание быото уделено изучению процессов, приводящих к распаду аминокислот, их дезаминированию, окислительному декарбоксилированию образующихся при дезаминировании о. -кетокислот, разрушению циклических компонентов и т.д. Наряду с этим в организмах встречаются вещества, образующиеся из аминокислот, содержа-щие азот и играющие часто важную роль в процессах обмена веществ. К ним относятся гормоны — тироксин, трийодтиронин, норадреналин и адреналин, источниками образования которых являются фенилаланин и тирозин, [c.400]

    Конечные продукты распада аминокислот. Как было отмечено выше, в результате распада аминокислот возникают СОг, N113, амины, кетокислоты и в ряде случаев еще достаточно сложные вещества, относя1Щ еся к тем или иным классам органических соединений. Все они, за исключением СО2 и КНз, подвергаются в конце концов дальнейшей деструкции. Амины путем окислительного дезаминирования превращаются в карбоновые кислоты  [c.272]

    При полном гидролизе белки и пептиды распадаются иа а-амино-карбоновые кислоты, H2N— HR—СООН. К настоящему времени из гидролизатов белков удалось выделить более 20 так называемых природных аминокислот , которые по конфигурации асимметрического атома углерода принадлежат к одному и тому же стернческому ряду (L), отличаясь друг от друга лишь остатками R. Помимо природных аминокислот, выделяемых из белков, известны также редкие аминокислоты (см. ниже). Все а.минокислоты можно рассматривать как С-замещенные производные аминоуксусиой кислоты. Их строение может быть установлено окислительным расщеплением, в результате которого боковая цепь вместе с а-углеродным атомом превращается в альдегид  [c.349]


Смотреть страницы где упоминается термин Окислительный распад аминокислот: [c.19]    [c.116]    [c.529]    [c.174]    [c.106]    [c.367]    [c.69]    [c.270]    [c.256]    [c.380]    [c.628]    [c.628]    [c.108]   
Биохимия Издание 2 (1962) -- [ c.256 ]




ПОИСК







© 2025 chem21.info Реклама на сайте