Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Родия оксиды

    Каталитическое восстановление оксидов азота. Проводят 13 присутствии в качестве катализаторов сплавов из металлов платиновой группы (палладий, рутений, платина, родий) или составов, содержащих никель, хром, медь, цинк, ванадий, церий и др. Восстановителями служат водород, оксид углерода, метан п другие углеводороды [c.65]

    Содержание окиси углерода в дымовых газах крекинг-установок уменьшают высокотемпературной регенерацией катализатора при 650—700°С с дожитом окиси углерода в двуокись и (или) введением в катализатор добавок, промотирующих дожиг окиси углерода. В качестве промоторов используются ионы редкоземельных металлов (рений, палладий, иридий, платина, родий и др.), способствующие повышению интенсивности горения кокса и обеспечивающие полное сгорание оксида углерода /14/. Высокотемпературная регенерация проводится при [c.34]


    Азотная кислота действует почти на все металлы (за исклю-ением золота, платины, тантала, родия, иридия), превращая их нитраты, а некоторые металлы — в оксиды. [c.413]

    Диоксид серы, оксид угле- Неорганическая пыль, тех-рода, оксиды азота, кисло- нический углерод родсодержащие органические соединения [c.17]

    Масса К[1сл( рода в 12 г оксида кальция составит [c.220]

    Проведенные исследования показали, что пламена водорода, оксида углерода, сероводорода и сероуглерода являются слабо ионизированными. В отличие от этих пламен углеводо-родо-воздушные пламена весьма сильно ионизированы. Максимальная концентрация ионов в углеводородном пламени при давлениях 0,30—98 кПа может достигать 10 —10 ион-см 3, а напряженность магнитного поля 10—50 В/см. [c.115]

    От носителя зависит способность металлов к восстановлению. Лучше всего это описано для железа. Несмотря на то что ионы железа на оксиде кремния или на угле легко и полностью восстанавливаются до металла, нанесенные на оксид алюминия ионы Ре "+ при обработке водородом превращаются только в Ре +. Поэтому если для катализа необходимо металлическое железо, то не следует использовать оксид алюминия в качестве носителя. Наоборот, если требуется двухвалентное железо в условиях, способствующих восстановлению, то оксид алюминия является предпочтительным носителем. Аналогично взаимодействуют с носителем и некоторые другие металлы, например родий. [c.14]

    По отношению к воде характеристические оксиды ведут себя различным образом и по этому признаку их можно подразделить на четыре группы довольно редки оксиды, растворяющиеся в воде без заметного химического взаимодействия (высшие оксиды рутения и осмия) большинство оксидов химически не взаимодействует с водой и не растворяется в ней — соответствующие гидроксиды получаются лишь косвенным путем (в частности, амфотерные оксиды AlsO ,, СггОз, РегОз, ZnO и т. п.) две взаимодействующие с водой группы оксидов, из которых одни при взаимодействии образуют растворимые в воде гидроксиды основного или кислотного характера (оксиды бора, углерода, азота, фосфора, серы, щелочных и щелочно-земельных металлов), а вторые — нерастворимые в воде гидроксиды (оксиды бериллия, магния, редкоземельных элементов) основного характера. Учитывая, что сама вода является идеальным амфолитом, индифферентность оксидов по отношению к ней вовсе не связана с их индифферентностью по отношению к кислотам и щелочам. Все кислотные оксиды, независимо от их отношения к воде, реагируют со щелочами, а все основные — с кислотами. Так, нерастворимые в воде СиО и SiOa хорошо взаимодействуют с кислотами и щелочами соответственно. В то же время амфотерные оксиды, как правило, устойчивы не только по отношению к воде, но и к кислотам и щелочам. Типичным примером такого рода оксидов является AI2O3, совершенно не взаимодействующий с кислотами, а со щелочами реагирующий лишь в жестких условиях — при сплавлении. [c.63]


    Проводники I рода, или эл( Ктронопроводящие тела. К ним относятся металлы, их некоторые оксиды и углеродистые материалы. Прохождение тока в проводн1 ках I рода обеспечивается элект- юнамн. Удельное сопротивление проводников I рода лежит в интервале от 10 до 10 Ом-м, температурный коэффициент про- [c.102]

    Для большинства высокотемпературных реакций используются металлические катализаторы. Они могут быть в виде металла, нанесенного на тугоплавкий носитель, такой, как плавленый оксид алюминия, смешанный оксид алюминия и магния, алюмосиликат, например муллит, алюминат магния (шпинель) и смешанный тугоплавкий оксид алюминия и хрома. Оксид хрома может обладать собственной каталитической активностью, и поэтому его следует тщательно исследовать, прежде чем использовать в качестве носителя. Наоборот, если возможно получить бифункциональный катализатор, в котором действие металла дополняется действием носителя, то хром в этом случае может принести существенную пользу. К числу металлов, используемых как катализаторы дегидрирования, принадлежат медь, серебро и иногда золото. Такие благородные металлы, как платина, палладий, родий и рутений, можно использовать при очень высоких температурах, а серебро недостаточно устойчиво при температурах выше 700 °С. [c.142]

    В качестве катализаторов дегидрирования используют никель, платину, родий, медь, смесь оксидов меди и цинка или медно-цинковый сплав в виде одного из типов латуни. При гидрировании угля каменноугольная зола тоже оказывается вполне подходящим катализатором. [c.153]

    С 1975 г. часть автомобильной системы понижения токсичности отработавших газов. Окислительные нейтрализаторы удаляют из отработавших газов углеводороды и окись углерода (СО), понижающие нейтрализаторы воздействуют на содержание в газах оксидов азота (NOx). В обоих нейтрализаторах используются катализаторы, содержащие благородные металлы (платину, палладий или родий), которые могут отравляться содержащими свинец соединениями топлива или масла. [c.6]

    Диоксид серы, оксид угле- Органическая и неорганиче-рода, оксиды азота, серово- ская пыль, смолистые веще-цород, аммиак, углеводоро- ства ды, кислород- и азотсодержащие органические соединения [c.17]

    Гидроксид иридия (+4) почти нерастворим в щелочах, но легко растворяется в кислотах. Состаренный 1г(0Н)4 (потерявший избыточное количество воды) более устойчив к действию кислот. Так, он не растворяется в разбавленной НгЗО , а в соляной кислоте растворим за счет образования комплекса Н2[1гС1в1. В противоположность родию оксид 1гаОз менее стабилен. Его можно получать действием щелочи на Ыаа[1гС1в] только в инертной или восстанови- [c.420]

    Гидроксид иридия (+4) почти норастворпм в щелочах, но. чегко растворяется в кислотах. В противоположность родию оксид 1Г2О3 менее стабилен. [c.498]

    Продукция угле- водо- роды моно- оксид угле- рода оксид азота хлор- метил метанол+ +форма- льдегид неорга- ничес- кая пыль [c.8]

    В отличие от гидроксида натрия гидроксид калия быстро разрушает платину даже при 490 °С [4.543]. Этот гидроксид проявляет повьшгенную реакционную способность и но отношению к другим металлам [4.544]. Примеси в рубине определяют после сплавления пробы с гидроксидом калия в циркониевом тигле [4.545]. Часто используют железные тигли, но поскольку они сильно разрушаются, то необходимо учитывать присутствие железа в плаве. Предлагается использовать также тигли из родия, оксидов циркония или тория [4.546], А металлического циркония, корунда и политетрафторэтилена. А [c.114]

    Электроды второго рода представляют собой иолуэлемепты, состоящие из металла, покрытого слоем его труднорастворимого соединения (соли, оксида или гидроксида) и погруженного в раствор, содержащий тот же анион, что и труднорастворимое соединение электродного металла. Схематически электрод второго рода можно представить как [c.162]

    Однако реализовать кислородный электрод, поведение которого описывалось бы выведенными уравнениями, иа практике весьма трудно. Это обусловлено особенностями, отличающими все газовые электроды, и, кроме того, способностью кислорода (особенно во влажной атмосфере) окислять металлы. На основную электродную реакцию накладывается поэтому реакция, отвечающая метал-локсидному электроду второго рода. Даже на платине могут образовываться оксидные пленки, и поведение кислородного электрода не будет отвечать теоретическим ургвнениям эти отклонения проявляются, папример, в характере изменения потенциала с давлением кислорода. Кроме того, имеются основання полагать, что реакция иа кислородном электроде да ке в отсутствие поверхностных оксидов отличается от той, на которой основан вывод уравнения для потенциала кислородного электрода. По данным Берла (1943), подтвержденным и другими исследователями, часть кислорода восстанавливается на электроде не до воды, а до ионов пероксида водорода  [c.167]

    Рассчитать объемную долю оксида серы (IV) в газе, полученном при обжиге колчедана, jur весь k-i ./io-род воздуха расходуется на обжиг. Состав воздуха (в объемных долях) О2 0,21 и N2 0,79. [c.140]

    Для родия (III) и иридия (III) известны оксиды Э Оз, гидроксиды Э(ОН)з (точнее ЭРз-пНР), галиды ЭНа1д и ряд других соединений, в частности соли типа 32(804)3, КЬ(ЫОз)з. Соединения 1г (III) более или менее легко окисляются, переходя в производные 1г (IV). Например, 1г(0Н)з на воздухе переходит в 1г(0Н)4, при нагревании до 400° С 1Г2О3 диспропорционирует на IrOg и Ir. Все соединения рассматриваемых элементов окрашены. Аквокомплексы Со (III) не стабильны, так как являются сильными окислителями  [c.602]


    Гидрирующим компонентом обычно служат те металлы, ко — тор ае входят в состав катализаторов гидроочистки металлы VIII (Ni, Со, иногда Pt или Pd) и VI групп (Мо или W). Для активирования кат,1лизаторов гидрокрекинга используют также разнообразные промоторы рений, родий, иридий, редкоземельные элементы и др. Функции связующего часто выполняет кислотный компонент (оксид алк миния, алюмосиликаты), а также оксиды кремния, титана, циркония, магний— и цирконийсиликаты. [c.227]

    Оксид углерода, сероугле- Органическая пыль, технп-род, хлор, ртуть металличе- ческий углерод, кислоты ская, углеводороды [c.17]

    Оксид углерода не оказывает, по-видимому, никакого воз действия на поверхности материалов, жизнедеятельность выс ших растений. Большие концентрации его могут вызвать фи знологические и патологические изменения, а также смерть Это токсичный газ, вызывающий головную боль, головокруже ние, рвоту, одышку, замедленное дыхание, судорогу, гибель Поэтому установлены его жесткие предельно допустимые кон центрации в воздухе рабочих помещений — 20 мг/м , населен ных пунктов — 3 мг/м максимально разовая, 1 мг/м средне суточная. Оксид углерода, соединяясь с гемоглобином, образу ет карбоксигемоглобин СОНЬ. Сродство гемоглобина с оксидом углерода примерно в 210 раз выше его сродства с кислородом Процесс образования в крови СОНЬ — обратимый. Оксид угле рода после прекращения его вдыхания постепенно выделяется, и кровь человека очищается от него наполовину за каждые 3— [c.21]

    Многие элементы, соединяясь друг с другом, могут образовать разные вещества, каждое из которых характеризуется определенным соотношением между массами эти элемеитои. Так, углерод образует с кислородом два соединения. Одно из них — оксид угле-рода(И) или окись углерода — содержит 42,88% (масс.) углерода и 57,12% (масс.) кислорода. Второе соединение — дяоксид и./1и двуокись углерода — содср.жит 27,29% (масс.) углерода и 72,71% (масс.) кислорода. Изучая подоб 1ые соединения, Дальтон в 1803 г. установил закон гфатных отношений  [c.23]

    Закон Гесса дает возможность вычислять тепловые эф11зекты реакции в тех случаях, когда их неиосредственное измерение почему либо неосуществимо. В качестве примера такого рода расчетов рассмотрим вычисление теплоты образования оксида углерода (Н) из графита и кислорода. Измерить тепловой эффект реакции [c.169]

    Эта реакция показывает, что оксид углерода(II) можно ра сматривать как ангидрид муравьиной кислоты, Хотя муравьин кислота пе может бг гть получена непосрелстпеггио из оксида угл рода(Н) и воды, солн ее об )азуются при взаимодействии едк( ш,елочей с оксидом углерода ири 150—200 С  [c.444]

    Каталитический риформинг протекает на активных центрах двоякого рода металлических и кислотных. Металлические центры (платина или ш. 1тина, промотированная добавками хЛора и металлов, например рения, иридия, олова, редкоземельных элементов), ускоря ют реакции дегидрирования парафинов в олефины, нафтенов в арома тические, диссоциацию молекулярного водорода, подаваемого извне гидрирование и содействуют дегидроциклизации и изомеризации Кислотные центры, расположенные на носителе - хлорированном оксиде алюминия, способствуют реакциям изомеризации олефинов циклизации и гидрокрекинга по карбоний-ионному механизму. [c.139]

    Пероксиацетилнитрат (ПАН), продукт фотохимической реакции между оксидами азота и углеводо родами, является очень сильным фитотоксичным веществом и представляет собой угрозу в зонах, загрязненных отходящими газами от сжигания жидкого топлива. Даже при таких низжих концентрациях, как 0,05 мли- растения бывают поражены за 8 ч. Значительное повреждение гороха, томатов и петуньи обнаруживается уже при концентрации ПАН 0,5 млн- и времени экспозиции 1 ч и 0,1 мл - при В1ремени экспозиции 5 ч. [c.35]

    При выборе метода удалания с роводо рода из технологических или отходящих газов прежде всего необходимо учитывать исходную концентрацию и требуемую степень очистки, наличие других примесей, а также решить вопра с — следует ли одно1Времвн о удалять оксид углерода (IV). Стоимость электроэнергии и пара, реагентов, а также капиталовложения, которые зависят от сложности установки и применения особых конструкционных материалов — Bi e эти вопросы необхо Димо учитывать при выбо ре самого экономически выгодного процесса. [c.150]


Смотреть страницы где упоминается термин Родия оксиды: [c.326]    [c.92]    [c.16]    [c.16]    [c.314]    [c.605]    [c.177]    [c.178]    [c.542]    [c.283]    [c.174]    [c.491]    [c.495]    [c.27]    [c.239]    [c.140]    [c.214]    [c.19]    [c.243]   
Неорганическая химия (1989) -- [ c.420 ]




ПОИСК







© 2025 chem21.info Реклама на сайте