Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

оксид, хлорирование

    Нами было установлено, что разогрев слоя для различных модификаций оксида алюминия (у-, т]-) при хлорировании примерно одинаков. Движение теплового фронта не коррелирует в полной мере со скоростью насыщения катализатора хлором. Был рассчитан тепловой эффект реакции хлорирования на основании материального баланса хлорирования, который составил около 125 кДж/кг катализатора. Максимальная температура разогрева слоя катализатора при хлорировании в выбранных условиях, по данным расчета, может составить 70 20 °С. На основании полученных данных о движении теплового фронта, изменении концентрации хлора в слое оксида алюминия, расчетного значения теплового эффекта была разработана математическая модель процесса хлорирования оксида алюминия парами четыреххлористого углерода в интервале температур 240-260 °С [89]. [c.71]


    Каталитическая активность хлорированного окснда алюминия. Хлорированный т -оксид алюминия способен изомеризовать н-бутан в отсутствие платины и в отсутствие водорода (табл. 2.13). Замена водорода гелием в качестве газа-носителя в реакции изомеризации не изменила начальной изомеризующей активности катализатора. Наиболее глубоко изомеризация н-бутана протекала в отсутствие газа-носителя. Присутствие платины в катализаторе несколько снижает его активность в реакции изомеризации н-бутана. Исследования поверхности у- и т -оксида алюминия до и после хлорирования четыреххлористым углеродом различными физико-химическими методами позволили прийти к ряду заключений, которые в свою очередь привели к определенным выводам о природе активности хлорированного т -оксида алюминия. [c.72]

    В промышленных процессах низкотемпературной изомеризации парафиновых углеводородов используются два типа катализаторов приготовленные сублимацией хлорида алюминия на платинированный 7-оксид алюминия и полученные низкотемпературным хлорированием ту-оксида. [c.66]

    Температура прокаливания платинированного оксида алюминия оказывает существенное влияние на хлорированный катализатор. При изменении температуры прокаливания от 250 до 600 °С изомеризующая [c.69]

    ИК-спектроскопией адсорбированного аммиака и пиридина установлено усиление апротонной кислотности и образование центров протонной кислотности в результате хлорирования т -оксида алюминия четыреххлористым углеродом. Исследования масс-спектров продуктов десорбции с поверхности образцов -у- и tj-оксидов алюминия до и после хлорирования и электронная оптическая спектроскопия адсорбированных состояний некоторых оснований позволили установить, что причиной принципиальной разницы в каталитической активности хлорированных tj- и 7-оксидов алюминия в низкотемпературной изомеризации парафиновых углеводородов являются различия в свойствах поверхности прокаленных при 500 °С оксидов алюминия, в том числе в количестве и расположении гидроксильных групп, обусловленных особенностями кристаллической структуры 7 - и 7-оксидов алюминия [90]. Хлорирование поверхности оксида алюминия, сопровождающееся выделением хлороводорода и диоксида углерода, усиливает кислотность апротонного и протонного типа. Бренстедовская кислотность обусловлена хемосорбированнымНС . [c.72]


    Физический смысл эффекта разогрева заключается в том, что теплота, выделяющаяся при хлорировании, сосредотачивается в узкой зоне между движущимися по слою оксида алюминия фронтами фронтом реакции и фронтом передачи теплоты током газа. Скорость движения теплового фронта зависит от скорости газовой фазы, ее теплоемкости, а также порозности слоя оксида алюминия и теплоемкости реакционной смеси  [c.71]

    Влияние количества и природы металла. Активность катализатора низкотемпературной изомеризации уменьшается в зависимости от природы металла следующим образом Р1 > Рс1> КЬ> 1г [91 ]. Таким образом, наиболее активным металлическим компонентом катализатора является платина. Увеличение содержания платины по-разному влияет на активность катализатора на основе у- и т -оксида алюминия. Известно, что т -ок-сид алюминия после хлорирования обладает изомеризующей активностью, однако она быстро снижается во времени. Введение в т -оксид алюминия 0,1-1% приводит к некоторому снижению изомеризующей активности (рис. 2.15), однако обеспечивает стабильную работу катализатора. Высокая стабильность была достигнута при массовой доле платины 0,4-0,6% (рис. 2.16). [c.73]

    Несколько отличный механизм отравляющего действия сероводорода можно предположить на хлорированных алюмоплатиновых катализаторах низкотемпературной изомеризации. Известно, что хлорированный 17-оксид алюминия способен изомеризовать парафиновые углеводороды с высокой начальной активностью даже при отсутствии платины [91, 101]. Диссоциативная адсорбция сероводорода донорно-акцепторными центрами хлорированного оксида алюминия должна снижать кислотность поверхности катализатора. Подобный характер взаимодействия Н2 5 с поверхностью прокаленного оксида алюминия отмечался в литературе [102]. Непрочность подобной связи обуславливает возможность восстановления активности катализаторов низкотемпературной изомери- [c.88]

    Хлорирование и дехлорирование носителя катализатора — у оксида алюминия является равновесным процессом содержание хлора в катализаторе зависит от мольного отношения водяные пары хлороводород в газовой фазе  [c.134]

    В качестве металлического компонента катализатора используются платина или палладий, в качестве носителя — фторированный или хлорированный оксид алюминия, аморфные или кристал-ческие алюмосиликаты (декатионированные формы фожазита [c.179]

    Особый случай аддитивного хлорирования представляет присоединение хлора по атомам, находящимся в низшем валентном состоянии, например синтез фосгена нз оксида углерода и хлора  [c.98]

    В частности, в работе [141 1 с помощью ИК-спектроскопии подтверждено, что значительно более высокая изомеризующая активность г]-оксида алюминия по сравнению с у-оксидом связана с его более высокой кислотностью и что сила кислотных центров увеличивается при хлорировании оксида алюминия. [c.71]

    Решение. Хлорирование оксида алюминия в расплаве хлоридов протекает по реакции  [c.190]

    Пример 25. При хлорировании оксида алюминия в расплаве хлоридов происходит абсорбция хлора расплавом, сопровождающаяся взаимодействием растворенного хлора с оксидом алюминия и углеродом. [c.191]

    Процесс производства катализаторов риформинга многостадиен. Он включает приготовление носителя — оксида алюминия. Далее следует нанесение платины и других активных компонентов. После этого осуществляют сушку и прокаливание катализатора. Если это требуется, то прокаливание завершают газофазным хлорированием. Затем проводят восстановление катализатора. Ряд модификаций катализатора риформинга (например, содержащие рений и иридий) подЬергают осернению. Восстановление и осернение катализаторов обычно осуществляют на установках каталитического риформинга. [c.75]

    Установлено, что с увеличением примеси бемита в байерите (исходная модификация гидроксида алюминия для получения т -оксвда алю1 -ния) активность хлорированного 77-оксида алюминия в реакции изомеризации н-бутана линейно снижается до нулевого значения для 100% бемита. Соответственно снижаются и удельная поверхность оксида алюминия -с 360 до 230 м /г и содержание хлора после хлорирования катализатора — в 2 раза (рис. 2.10). [c.66]

    Концентрация ионов. хлора на поверхност образцов 17- и 7-оксида алюминия отличается незначительно. Это означа , что изомеризующая активность хлорированного оксида а.чюмг и ч определяется не общим [c.66]

Рис. 2.11. Влияние ионов железа и натрия на из. м рчзующую активность хлорированного Г) - оксида алюминия [10 . Рис. 2.11. <a href="/info/997772">Влияние ионов железа</a> и натрия на из. м рчзующую <a href="/info/296189">активность хлорированного</a> Г) - оксида алюминия [10 .

    Влияние природы хлорагента и условий хлорирования на изомеризующую активность катализатора. Взаимодействие хлорорганического соединения, например четыреххлористого углерода, с кислородсодержащими группами на поверхности оксида алюминия при 250—300 °С в среде газа-носителя выражается суммой химических реакщ1Й, приводящих к образованию фосгена, диоксида углерода, хлороводорода и воды. За счет замещения ионов кислорода на хлор масса катализатора при хлорировании увеличивается. [c.67]

    Для получения активного в реакщ и изомеризащ1и парафиновых углеводородов катализатора необходимы определенные условия хлорирования температура прокаливания байерита для получения т/-оксида [c.67]

    Природа хлорагента. Хлорирование платинированного оксида алюминия может осуществляться хлорорганическими доединениями с общей формулой [c.68]

    МОЖНО провести восстановление диазогруппы, т. е. формально замещение на водород (0,5—4 ч, 40 °С [93]). По другой методике диазосоединение перемешивают с гипофосфорной кислотой в хлороформе в присутствии небольшого количества оксида меди и (если необходимо) 18-крауна-б [94]. На основе получения краун-катионных комплексов и последующем генерировании арилраднкалов были разработаны идущие с высокими выходами методы синтеза арилбромидов и арилиодидов [855]. Галоге-нирование проводится в хлороформе с использованием стабильных и безопасных тетрафенилборатов арилдиазония в присутствии каталитического количества 18-крауна-б и либо небольшого избытка бромтрихлорметана для получения бромидов, либо иодметана или молекулярного иода для получения иодидов. В ходе реакции образуется некоторое количество продуктов восстановления и хлорирования (О—8%). Если растворителем является бромхлорметан, то в качестве побочного продукта образуется гексахлорэтан. [c.282]

Таблица 2.11. Влияние природы хлорагента на изомеризующую активность хлорированного 7]-оксида алюминия [19] Таблица 2.11. <a href="/info/311816">Влияние природы</a> хлорагента на изомеризующую <a href="/info/296189">активность хлорированного</a> 7]-оксида алюминия [19]
    Изменение природы хлорагента практически не влияло на содержание хлора в образцах катализатора это приводит к заключению, что в состав активных центров поверхности оксида алюминия, ответственных за реакцию изомеризации, входит лишь небольшая частьот обшего содержания хлора в катализаторе. Суммарный баланс хлорирования указьшает на замену ионов кислорода поверхности оксида алюминия ионами хлора. Эта реакция является основной при хлорировании. Определяющее влияние природы хлорорганического соединения на активность катализатора в реакции изомеризации может быть объяснено необходимостью фиксации двух ионов хлора на поверхности оксида алюминия на определенном расстоянии друг от друга. [c.69]

    Температура и давление при хлорировании. Изомеризу-юшая активность хлорированного платинированного т -оксида алюминия в зависимости от температуры обработки четыреххлористым углеродом проходит через максимум, соответствующий температуре хлорирования 275-300 С. Это явление связано с неполнотой разложения четыреххлористого углерода при температурах ниже 250 °С и образованием хлорида алюминия прп высоких температурах хлорирования (рис. 2.14). [c.70]

    Каталитический риформинг протекает на активных центрах двоякого рода металлических и кислотных. Металлические центры (платина или ш. 1тина, промотированная добавками хЛора и металлов, например рения, иридия, олова, редкоземельных элементов), ускоря ют реакции дегидрирования парафинов в олефины, нафтенов в арома тические, диссоциацию молекулярного водорода, подаваемого извне гидрирование и содействуют дегидроциклизации и изомеризации Кислотные центры, расположенные на носителе - хлорированном оксиде алюминия, способствуют реакциям изомеризации олефинов циклизации и гидрокрекинга по карбоний-ионному механизму. [c.139]

    Таким образом, независимо от того, каким способом снижают активность металлического компонента алюмоплатинового катализатора в реакции гидрогенолиза, состав продуктов раскрытия кольца метилциклопентана во всех случаях меняется в сторону значительного преобладания н-гексана. Подобное явление можно объяснить тем, что реакция раскрытия пятичленного кольца протекает не только на платине, но и на кислотном носителе — хлорированном оксиде алюминия, [46 ]. Дислотно.-катализируемая реак1 ия приводит главным образом к получению -гексана из метилциклопентана, но" скорость ее значительно меньше скорости гидрогенолиза этого углеводорода на. платине. [c.26]

    Роль водорода. Пропускание углеводородов над хлорированным и фторированным оксидом алюминия при температурах риформинга приводит к быстрому их закоксовыванию [Ш, 112]. Однако катализаторы риформинга на этих носителях работают длительное время, не изменяя существенно своей активности и селективности. Следовательно, в условиях риформинга, гидрирование ненасыщенных соединений, ответственных за образование кокса, происходит не только на платине, но и на носителе. Гидрирование же на носителе может осуществляться только за счет водорода спилловера. [c.56]

    Пример 24. В процессе хлорирования оксида алюминия хлором в расплаве хлоридов в присутствии нефтяного кокса определен состав газообразных продуктов хлорирования после конденсации из них паров хлорида алюминия. Рассчитать скорость хлорирования оксида алюминия при следующих условиях. Расход хлбра 100 л/ч, содержание хлора в исходном газе 100% (об.). В газообразных продуктах хлорирования содержится 80% (об.) хлора и 20% (об.) диоксида углерода. Барометрическое давление принять равным 0,1 МПа. [c.190]

    Этот способ используют, например, при приготовлении алюмо-платннооловяпного катализатора (пат. США 3929683, 3948804, 3960710). Сперва соосаждением получают носитель, содержащий оксид олова (IV), который сушат и прокаливают. Потом обычным способом наносят платину, после чего катализатор прокаливают и восстанавливают. Если подобный катализатор готовить пропиткой оксида алюминня растворами хлоридов олова, то, вследствие их пучести, происходят значительные потери олова при прокаливании. катализатора [164, 165]. Преимущество соосажденного катализатора — отсутствие таких потерь не только при прокаливании, но и при окислительном хлорировании.. [c.78]

    Сложную систему представляет собою катализатор Р1—5п/А120з после восстановления при 500 °С [183]. Наряду со сплавами Р1—5п, он содержит ионные формы двух- н четырехвалентного олова, а также кристаллы платины. При нанесении систе.мы на хлорированный оксид алюминия значительно увеличивается степень восстановления соединений олова [184]  [c.83]

    В промышленных условиях определенную роль могут играть и другие факторы, связанные с технологией окислительной регенерации. Прежде всего, это высокая концентрация водяных паров в кислородсодержащем газе, поступающем в реакционный блок, что способствует спеканию платины, тем более, что в катализаторе значительно снижается содержание хлора. С другой стороны, образующиеся в процессе регенерации поверхностные сульфаты на У.,0 , тормозят окислетш оксида углерода (П) [2051. Действие оксида углерода (П) на хлорированный алюмоплатиновый катализатор приводит к значительному росту кристаллитов платины, что, как предполагают, связано с образованием легкоподвижных карбо-нилхлоридов платины [206]. Следовательно, промышленные условия окислительной регенерации усугубляют процессы, ведущие к уменьшению дисперсности нлатины. [c.88]

    При всей сложности химизма каталитического риформинга его технологическое оформление довольно просто. С одной стороны, это имеет очевидные преимущества, а с другой — ограничивает возможности активного воздействия на процесс. Все параметры риформинга, кроме температуры, довольно жестко определяются на стадии проектирования установки и могут изменяться при ее эксплуатации. лишь в узких пределах. Использование хлорированного оксида алюминия в качестве носителя в катализаторах ри< рминга дает еще одну [c.207]


Смотреть страницы где упоминается термин оксид, хлорирование: [c.272]    [c.439]    [c.199]    [c.43]    [c.67]    [c.70]    [c.80]    [c.140]    [c.286]    [c.287]    [c.315]    [c.55]    [c.92]    [c.191]   
Неорганические хлориды (1980) -- [ c.152 ]




ПОИСК





Смотрите так же термины и статьи:

Вольфрама оксид хлорирование

Восстановительное хлорирование оксида бериллия

Германия оксид хлорирование

Железа оксид из пыли реактора для хлорирования ильменита

Железа оксиды хлорирование

Ниобия оксид хлорирование

Селена оксид, хлорирование

Тантала оксид хлорирование

Титана оксид хлорирование

Тория оксид хлорирование

Урана оксид хлорирование

Фосфора оксид, хлорирование

Хлорирование в расплаве оксидов

Хлорирование металлов, неметаллов и оксидов

Хлорирование оксидов и природных соединений

Циркония оксид хлорирование

оксид, хлорирование селективное хлорирование

оксид, хлорирование субхлориды

оксид, хлорирование хлорид

оксид, хлорирование хлорирование

оксид, хлорирование хлорирование



© 2025 chem21.info Реклама на сайте