Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пар действие на металлы

    На установках каталитического крекинга, на которых не предусмотрены специальные приемы по улавливанию или пассива — ции отравляющего действия металлов, содержание их в сырье нормируется не более 2 г/т. [c.105]

    Контактная коррозия может протекать, когда два металла с различными потенциалами соприкасаются друг с другом либо в водной среде, либо при наличии влаги, конденсирующейся из воздуха. Так же, как и в рассмотренном выше случае значительных включений, металлы оказывают друг на друга поляризующее действие металл с меньшим потенциалом поляризуется анодно. и скорость его коррозии вблизи места контакта резко возрастает. [c.558]


    Почти для всех светлых топлив нормируется йодное число, как показатель наличия в них непредельных углеводородов, обусловливающих химическую нестойкость этих продуктов. Под влиянием температуры, кислорода воздуха, каталитического действия металлов, света и других факторов непредельные углеводороды быстро окисляются и полимеризуются. Это приводит к осмолению топлив и ухудшению их эксплуатационных свойств. [c.200]

    Можно полагать, что торможение окисления сернистыми соединениями больше обусловлено их способностью пассивировать каталитическое действие металлов вследствие образования защитной пленки, чем непосредственным воздействием этих соединений на окислительные цепи. [c.90]

    Каталитическое действие металла практически прекращается, если он покрывается пленкой, образованной продуктами окисления. Следовательно, в работающих двигателях и механизмах роль катализаторов играют главным образом трущиеся поверхности, с которых защитная пленка непрерывно удаляется при контакте. [c.196]

    Широко исследовано каталитическое действие металлов на разложение метана по реакции [c.24]

    Свободные радикалы можно получить различными способами 1) путем термического разложения металлоорганических или органических соединений 2) путем фотохимического разложения альдегидов и кетонов 3) в результате реакции в электрическом разряде 4) действием металлов на органические галогенопроизводные 5) бомбардировкой молекул а-, р-, у-пуча-ми и нейтронами. [c.84]

    Каталитическое действие металлов, имеющих несколько валентных состояний, можно объяснить переходом электронов  [c.154]

    Механизм окисления в присутствии катализаторов —металлов изучен недостаточно. Действие металлов можно объяснить по-разному образованием осколков молекул, обладающих свойствами свободных радикалов перераспределением электронов между гидроперекисями и металлом в низшем валентном состоянии или, наконец, образованием некоторых соединений с гидроперекисями, имеющих кислый характер. [c.178]

    Зональное распределение кокса в зерне катализатора выглядит следующим образом. Кокс первой, низкотемпературной зоны (375 °С) окисления локализован в области каталитического действия металла, а второй -высокотемпературной (440-460 °С) - преимущественно на носителе. Перераспределение кокса по зонам окисления можно объяснить деструктивными превращениями (гидрированием кокса) в среде водорода при прогреве, с образованием некоторого количества отложений с небольшим молекулярным весом, которые могут мигрировать в газовую фазу. На рис. 4.3 представлено распределение кокса по зонам во времени, а на рис. 4.4 - изменение активности и доступной поверхности платины при накоплении кокса на катализаторе. [c.52]


    На втором этапе при температуре 350-480°С из катализатора выгорает основная масса кокса. При этом кокс, локализованный в области каталитического действия металла выгорает при температуре 375°С, а кокс носителя - при температуре 440-460°С. Платина катализирует окисление, реакция идёт с выделением тепла, поэтому на этой стадии важно не допустить перегрева слоя катализатора и спекания платины. С этой целью концентрация кислорода в циркулирующем инертном газе не должна превышать 1% об. [c.54]

    Каталитическое действие металлов и скорость расходования антиокислителей. При исследовании каталитического действия ме- [c.249]

    Некоторое количество 50д может образовываться и в результате каталитического действия металла стенок цилиндров. Не исключено также и гомогенное окисление 50., в пламени.. [c.302]

    Многочисленные анализы выхлопных газов показывают, что обнаруживаемое в них количество 50д в значительной мере зависит от места и способа отбора пробы газа. Очевидно, обращение низшего окисла в высший может происходить не только под действием металла стенок камеры сгорания, но и на всем пути газов до места отбора пробы. В связи с этим определение соотношения 50а и 50з в пробе газа не дает полного представления о действительных масштабах образования серного ангидрида [44]. [c.302]

    Известно, что начало образования углеродистых продуктов связано с окисляемостью масла. Не останавливаясь на основных закономерностях окисления масел (см. раздел 2.3), отметим лишь, что одним из наиболее важных моментов данного процесса является каталитическое действие металла [223, 224]. На интенсивность протекания противоокислительных процессов влияют также твердые продукты, диспергированные в объеме масла (рис. 4.7), причем каталитическая активность (резкое увеличение вязкости масла) отмечается в случае проявления ими электроноакцепторных свойств (графит, сажа), а ингибирующая способность характерна для (Мо52)[223]. [c.211]

    На индукционный период влияет не только химический состав тошшва, но и внешние факторы - тешература, величина поверхности, соприкасающейся с воздухом, каталитическое действие металлов и т.д. [c.44]

    Расход многих антиокислительных присадок резко возрастает в присутствии катализаторов окисления — главным образом меди и ее сплавов [ 176]. Поэтому за рубежом для подавления каталитического действия металлов в топлива вводят деактиваторы металлов. В отечественных реактивных топливах деактиваторы металлов не применяют. [c.197]

    Для устранения каталитического действия металлов можно вводить в масло специальные вещества, которые образуют на поверхности металла защитные пленки, препятствующие взаимодействию кислотных продуктов окисления масел с поверхностью металла. [c.14]

    Таким образом, на термоокислительную стабильность синтетических смазочных масел влияют температура, каталитическое действие металлов и строение углеводородов. Значение этих факторов особенно увеличивается в условиях работы современных двигателей. Чтобы повысить верхний предел рабочей температуры синтетических масел и продлить срок их службы в них необходимо вводить антиокислительные присадки и деактиваторы металлов. [c.171]

    Значение энергии активации окисления топлива ДТ-23, контактирующего с медной поверхностью, на -90 кДж/моль меньше таковой для автоокисления аналогичного образца в отсутствие меди, что свидетельствует о каталитическом действии металла на окисление топлива. [c.130]

    Наиболее важным является применение бихроматометрии для определения желеЗа в руДйХ, ШЛаках, сплавах и тому подобных веществах. При растворении их железо получается обычно (хотя бы частично) в виде Ре +-ионов, которые перед титрованием должны быть восстановлены до Ре2+. Это восстановление проводят так же, как было описано при перманганатометрическом определении Ре +, т. е. действием ЗпСЬ с последующим окислением избытка его НдСЬ. Часто также железо восстанавливают действием металлов или их амальгам. [c.393]

    П. Сырье среднего качества. Его можно перерабатывать на ус ановках ККФ последних моделей с двухступенчатым регенера — то JOM и отводом избытка тепла без предварительной подготовки, но при повышенном расходе металлостойкого катализатора и с пассивацией отравляющего действия металлов сырья. [c.221]

    При наличии в топливе меркаптанов осадкообразование происходит и без катализирующего действия металлов (табл. 52). С увеличением содержания меркаптапов количество образующегося в топливе осадка непрерывно возрастает, причем присутствие тиофенола вызывает более сильное осадкообразование, чем присутствие вторичного октилмеркаптана. Оптическая плотность топлива в присутствии тиофенола значительно увеличивается, что свидетельствует об интенсивном образовании и накоплении растворимых продуктов окисления. [c.87]


    Влияние катализатора может сказываться не только на скорости окисления и длительности индукционного периода, но и на внутристадийном превращении одних продуктов окисления в другие, а также на характере конечных продуктов [101]. По некоторым данным, металлы катализируют окисление в основном в тех случаях, когда они образуют соли с кислотами. Чаще всего это происходит в присутствии воды и кислорода воздуха. Каталитическое действие металла прекращается, если он покрывается защитной пленкой, создаваемой продуктами окисления. Большая часть исследователей считает, что основную роль в катализирующем действии солей оказывает катион [96]. При этом, однако, соли одного и того же металла, но разных кислот могут обладать неодинаковой катализирующей активностью, т. е. активность солей может зависеть не только от катиона, но и от аниона. Анион может и не оказывать принципиального действия, а может влиять, например, на растворимость соли в масле и таким образом косвенно воздействовать на эффективность металлического катализатора. [c.77]

    Детальные исследования по определению оптимальной концентрации деактиваторов для подавления каталитического действия металлов, встречающихся при хранении и применении автомобильных бензинов, показали, что увеличение концентрации от О до 0,010% почти пропорционально увеличивает химическую стабильность бензина, добавление деактиватора в концентрации свыше 0,010% малоэффективно, так как лишь незначительно улучшает стабильность бензинов. Оптимальной концентрацией деактиваторов типа салицилиден-о-аминофенола и дисалицилиденэтилендиамина для химической стабилизации товарных автомобильных бензинов является 0,01%. Следует отметить, что если действие деактиватора заключается в том, что он связывает растворенные ионы металла, то можно предположить, что добавление деактиватора может вызвать увеличение степени растворения металла в бензине. Для проверки этого предположения были поставлены опыты по окислению бензина в присутствии меди с разным, заведомо большим, количеством деактиватора. Полученные результаты показывают, что присутствие деактиватора не вызывает увеличения степени растворения металла изменение массы медной пластинки при окислении бензина с разным количеством салицилиден-о-аминофенола показано ниже  [c.258]

    Циклизация 1,5-дигалоицуглеводородов. Получение циклопентановых углеводородов действием металлов на 1,5-дигалоидуглеводороды не имеет большой ценности, так как выходы или очень низки нли совсем незначительны. Этим методом не удалось получить даже простейшего циклопентанового углеводорода в достаточно чистом состоянии. [c.452]

    Особенности применения деактиваторов. Для предотвращения каталитического действия металлов на такие продукты, как перекись водорода, некоторые витамины, животные и растительные жиры, растительные соки, резина, некоторые синтетические волокнистые вещества, фотореагенты, душистые и лекарственные вещества и т. д., с успехом применяются специальные присадки, получившие название деактиваторов (инактиваторов) металлов [94, 95]. [c.251]

Рис. 109. Эффективность дисалицилиденэтилендиамина при подавлении каталитического действия металлов на бензин термического крекинга, стабилизироваиный Рис. 109. Эффективность <a href="/info/470645">дисалицилиденэтилендиамина</a> при подавлении <a href="/info/221088">каталитического действия металлов</a> на <a href="/info/395875">бензин термического крекинга</a>, стабилизироваиный
    В общем виде схема распада ROOH на радикалы под действием металлов имеет вид [297, 298] [c.193]

    ИЗОМЕРИЗАЦИЯ БУТЕНА-1 и н-БУТАНА ПОД ДЕЙСТВИЕМ МЕТАЛЛОВ VIII ГРУППЫ НА у ОКИСИ АЛЮМИНИЯ И ЦЕОЛИТАХ [c.168]

    Как было указано выше, к другой группе антиокислительных присадок относятся дезактиваторы и пас иваторы, механизм действия которых отличается от механизма действия ингибиторов окисления [26]. Дезактиваторы предотвращают или уменьшают каталитическое действие маслорастворнмых соединений металлов за счет образования клешневидных комплексов, в которых атом металла сильно экранирован [27]. Механизм действия пассиваторов связан с образованием на поверхности металла хемосорбированной пленки, предохраняющей масло от каталитического действия металла [25, с. 238]. [c.65]

    Термоокислительную стабильность силоксановых масел можно повысить введением определенных добавок. Обычные присадки, используемые для минеральных масел, здесь непригодны из-за малой эффективности, слабой растворимости в силоксанах и низкой стабильности. Полиорганосилоксаны можно ингибировать ароматическими аминами, производными бензойной кислоты [пат. США 4174284]. Наиболее перспективными и специфическими стабилизаторами полиорганосилоксановых жидкостей в последние годы проявили себя соединения некоторых металлов переменной валентности (железа, кобальта, марганца, меди, индия, никеля, титана, церия), а также их смеси [33, с. 324 193, с. 33 пат. США 3267031, 3725273 а. с. СССР 722942]. Механизм стабилизирующего действия металлов переменной валентности в полисилокса-нах основан на дезактивации пероксирадикалов 8Ю0 . При этом металл переходит из одного валентного состояния в другое с [c.160]

    На увеличение скорости процессов окисления смазочного масла и на уменьшение антиокислительной активности ингибиторов кроме высокой температуры оказывают каталитическое влияние пбверхности трения металлов и продукты их коррозии. Так, в результате каталитического действия металла на окисление синте- [c.170]

    Очень важна для эксплуатации топлив возможность снижать в них осадкообразование. Нерастворимые осадки, образующиеся под влиянием высокой температуры, действия металлов и кислорода воздуха, являются продуктами гл-убоких превращений наименее стабильных углеводородов топлива, а также кислород-, серу-и азотсодержащих соединений в окислительной среде. Значительную роль при осадкообразовании играет изменение коллоидного состояния продуктов окисления топлив под влиянием температуры. Нерастворимые осадки могут образовываться в результате коагуляции коллоидных частиц смол, асфальтенов и других продуктов окисления, происходящей при определенных температурах, характерных для каждого топлива. При дальнейшем повышении температуры эти частицы могут вновь диспергироваться или растворяться в топливе. Поэтому, вероятно, эффективными диспергирующими присадками, используемыми для улучшения условий фильтрования топлив при высоких температурах, могут служить некоторые типичные стабилизаторы коллоидных систем — пептизаторы. [c.253]

    Вследствие малой скорости расходования природного ингибитора при О и 20 С для ПДТ и ЛГТК введения синтетического стабилизатора не требуется. При хранении топлив в условиях повышенных температур ( бО С) стабилизация всех компонентов необходима. Однако сделанные оценки справедливы в условиях опытного хранения компонентов в стеклянной таре. В условиях естественного хранения топливо контактирует с различными конструкционными материалами, способными оказывать катализирующее действие на окисление топлива растворенным в нем кислородом. Поэтому при более строгом подходе необходимо учитывать образование свободных радикалов из гидропероксидных групп топлива под действием металлов. [c.91]


Смотреть страницы где упоминается термин Пар действие на металлы: [c.238]    [c.42]    [c.160]    [c.181]    [c.123]    [c.635]    [c.638]    [c.351]    [c.291]    [c.43]    [c.243]    [c.256]    [c.360]    [c.361]    [c.136]   
Коррозия пассивность и защита металлов (1941) -- [ c.142 , c.155 , c.423 , c.622 ]




ПОИСК







© 2025 chem21.info Реклама на сайте