Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ван-дер-Ваальса поверхностного натяжения

    Механизмы удержания частиц в фильтрах стали в последние годы предметом обширных исследований, проведенных Крупном [468], Корном [177], Леффлером [529] и Биллингсом [78], их работы были рассмотрены в обзоре [529]. Силы, удерживающие частицы в фильтрующей среде, являются сочетанием [461] сил Ван-дер-Ваальса, электростатического притяжения и капиллярного поверхностного натяжения (при определенной влажности). Найдено, что при высокой влажности капиллярные силы начинают играть большую роль электростатические заряды стекают. [c.332]


    Наиболее важным из этих факторов является удельное сопротивление частиц, которое определяет возможность применения электростатического осаждения для каждого конкретного случая, связанного с проблемой пылеудаления. Когда частицы или капли попадают на осадительный электрод, они частично разряжаются и прилипают к нему под воздействием молекулярных адгезионных сил типа Лондона-Ван-дер-Ваальса, сил поверхностного натяжения вследствие присутствия влаги и электростатических сил. Степень электростатической адгезии зависит от скорости, с которой [c.463]

    Из уравнений, показывающих влияние температуры на поверхностное натяжение чистых жидкостей, наиболее распространено уравнение, предложенное Ван-дер-Ваальсом  [c.16]

    Однако уравнение Лэнгмюра выведено без учета взаимодействия между адсорбированными молекулами. Как показал А. Н. Фрумкин, оно часто не выполняется, особенно при адсорбции больших органических молекул, имеющих полярные группы. В последнем случае после некоторого заполнения поверхности электрода адсорбированными молекулами их взаимодействие между собой облегчает дальнейшую адсорбцию, так, что заполнение поверхности растет быстрее, чем это следует из уравнения Лэнгмюра. Фрумкин учел взаимодействие адсорбированных молекул при выводе уравнений, связывающих поверхностное натяжение с концентрацией вещества в растворе, введя по аналогии с уравнением Ван-дер-Ваальса так называемый аттракционный фактор [c.371]

    В таком поверхностном слое, связанном с промежуточной фазой, атомы твердого тела находятся в возбужденном состоянии, так как даже в отсутствие внешних, механических воздействий на межфазные поверхностные слои влияет поверхностное натяжение. Однако вследствие симметрии поверхностного слоя обобщенное уравнение Ван-дер-Ваальса, описывающее гетерогенное равновесие, не содержит членов, характеризующих поверхност-I ный слой, и, следовательно, можно использовать выводы теории [c.25]

    Наличие ангармонизма сближает твердое тело с реальными Д газами, так как асимметричность колебаний атомов обусловливает некоторое кинетическое давление соседних атомов друг на друга. До приложения внешних сил это давление уравновешивается внутри тела (с участием сил поверхностного натяжения). Поэтому твердое тело ведет себя подобно реальному газу в соответствии с изотермой типа Ван-дер-Ваальса. Отличие состоит лишь в том, что коэффициент термического расширения полностью обусловлен ангармонизмом. Всестороннее растяжение уменьшает это кинетическое давление и потому в адиабатных условиях может вызвать охлаждение тела, как и в случае расширяющегося газа. Поскольку энергия, связанная с ангармонизмом, весьма мала (т. е. мал коэффициент термического расширения), обнаружить такое охлаждение можно только высокочувствительными приборами. [c.14]


    В таком поверхностном слое, связанном с промежуточной фазой, атомы твердого тела находятся в возбужденном состоянии так как даже в отсутствие внешних механических воздействий на межфазные поверхностные слои влияет поверхностное натяже ние. Однако вследствие симметрии поверхностного слоя обобщен ное уравнение Ван-дер-Ваальса, описывающее гетерогенное равно весие, не содержит членов, характеризующих поверхностный слой и, следовательно, можно использовать выводы теории гетероген ных систем, полученные без учета поверхностного натяжения Растворение металлов в электролитах вполне соответствует мо дельной схеме Гуггенгейма, поскольку, например, растворение железа проходит через стадию образования промежуточных гидро-закисных соединений железа, с которыми твердая фаза находится [c.23]

    Одним из первых претворений в жизнь идей Гиббса о межфазных поверхностях мы обязаны Ван-дер-Ваальсу. Основываясь на элементарной градиентной теории плотности Максвелла для межфазных поверхностей [9], Ван-дер-Ваальс к 1888 г. [10, стр. 171 111 владел методикой, которая сохранила свою силу до настоящего времени. Две другие строгие формулировки градиентной теории плотности Ван-дер-Ваальса впервые опубликованные в 1971 г. [7, 12, 13], обеспечивают наиболее эффективный современный подход к статистико-механическим теориям поверхностного натяжения, его зависимости от кривизны и связанных с ним свойств. [c.65]

    Легко видеть, что уравнение Фрумкина является двухмерным аналогом уравнения Ван-дер-Ваальса. Оно хорошо передает концентрационную зависимость поверхностного натяжения растворов в широком интервале концентра- [c.83]

    Бредфорд с сотр. [203, 224] полагают, что пленкообразование происходит вследствие испарения воды и вязкого течения полимера, причем движущей силой коалесценции частиц является поверхностное натяжение полимера. Браун [206], исследовав пленкообразование при высушивании слоев полимерных дисперсий, пришел к выводу, что для коалесценции частиц необходимо, чтобы сумма сил поверхностного натяжения полимера, капиллярного давления воды, притяжения Ван-дер-Ваальса и гравитации была больше сил сопротивления сфер деформации и кулоновского отталкивания. Наиболее существенным из перечисленных сил Браун считает силу капиллярного давления, обусловленную поверхностным натяжением на границе вода - воздух и силу сопротивления сферы деформации, Пренебрегая остальными силами, автор формулирует условие спекания в виде неравенства. Пленкообразование считается возможным как при вязкотекучем, так и при высокоэластическом состоянии полимера, но только в том случае, если в системе присутствует капиллярная влага. [c.127]

    Ван-дер-Ваальс представил зависимость поверхностного натяжения а от температуры Т с помощью теории соответственных состояний  [c.206]

    Итак, зная природу адгезионного взаимодействия и параметры, характеризующие его, в частности константу Ван-дер-Ваальса, можно проводить расчеты таких величин, как поверхностное натяжение жидкости ашг и твердого тела тж, а также краевого угла. Однако эти расчеты сугубо ориентировочны и могут дать представления лишь о порядке величин и о характере их изменений. [c.19]

    В первом приближении атомное ядро сравнивают с каплей жидкости. Действительно, на основе капельной модели атомного ядра удается объяснить целый ряд явлений, которые наблюдаются в нем. Если две очень маленькие капли сталкиваются, то они образуют одну большую каплю и при этом освобождается энергия. В каплях действуют силы притяжения Ван-дер-Ваальса, в ядрах — ядерные силы. Как у капли, так и у ядра существует сила поверхностного натяжения. И капля, и ядро стремятся принять форму шара. Но существует также и различие между ядерной материей и жидкостью. Тогда как жидкость состоит из электрически нейтральных частиц, в атомном ядре наряду с нейтронами имеются и электрически заряженные протоны, а следовательно, и расталкивающие силы. [c.25]

    Том I (1962 г.) содержит общие сведения атомные веса и распространенность элементов единицы измерения физических величин соотношения между единицами измерения физических величин измерение температуры и давления математические таблицы и формулы важнейшие химические справочники и периодические издания основные данные о строении вещества и структуре кристаллов физические свойства (плотность и сжимаемость жидкостей и газов, термическое расширение твердых тел, жидкостей и газов равновесные температуры и давления критические величины и константы Ван-дер-Ваальса энергетические свойства теплопроводность электропроводность и числа переноса диэлектрическая проницаемость дипольные моменты вязкость поверхностное натяжение показатели преломления) краткие сведения по лабораторной технике. Имеется предметный указатель. [c.23]


    Легко видеть, что уравнение Фрумкина является двухмерным аналогом уравнения Ван-дер-Ваальса. Оно хорошо передает концентрационную зависимость поверхностного натяжения растворов в широком интервале концентраций. По аналогии с уравнением Ван-дер-Ваальса уравнение (IV. 10) называется уравнением состояния адсорбционного слоя. [c.75]

    Поверхностное натяжение жидкого селена, селена с различными примесями й теллура нами изучалось методом лежащей большой капли в цилиндрической кювете. Эта кювета с селеном устанавливалась на высокотемпературном микроскопе МНО-2. Снимки, тени капли проводились при различных увеличениях. Установка позволяла проводить измерения коэффициента поверхностного натяжения в инертной или окислительной средах. При измерениях а капля при каждой температуре изотермически выдерживалась в течение 5—10 мин. Измерения проводились на подложках из кварца, корунда и пирекса. При этом заметные различия в значениях а на.ми не обнаружены. В опытах мы использовали селен и теллур марки В-5 и селен и теллур, очищенные вакуумной дистилляцией и зонной плавкой. Наши результаты по температурной зависимости для селена описываются уравнением составного типа, аналогичным уравнению Ван дер Ваальса [4]. [c.64]

    Из уравнений, показывающих зависимость поверхностного натяжения от температуры в явном виде, наиболее распространено уравнение, предложенное Ван-дер-Ваальсом [c.72]

    Составы сосуществующих фаз и поверхностного слоя одинаковы. В этом случае экстремум поверхностного натяжения наблюдается совместно с экстремумом давления, так как согласно дифференциальному уравнению Ван-дер-Ваальса [1] [c.111]

    В результате проведенной работы Дауберт и сотр. пришли к выводу, что параметр растворимости удобен для корреляции коэффициентов бинарного взаимодействия в уравнении Соава (табл. 1.12). Эти же авторы вывели ряд соотношений, связывающих параметр растворимости с другими характеристиками, например параметрами уравнения Ван-дер-Ваальса, поверхностным натяжением, показателем преломления и вязкостью. В книге Бартона [176] приводится литература по этому вопросу, а также обширная подборка величин 6. [c.222]

    Одновременно с этим наночастицы порошка стремятся понизить эту энергию за счет взаимодействия с окружающей средой и в том числе с окружающими соседними частицами. Это взаимодействие вызывает диссипацию (рассеяние) энергии за счет агрегации частиц и изменения их кристаллической структуры. Частицы в агрегате могут удерживаться за счет сил Ван-дер-Ваальса, поверхностного натяжения в присутствии жидкой фазы, электростатических, скрепляющего действия твердотель-ньгх (кристаллических) мостиков, адгезионного действия органических и неорганических веществ. Таким образом, процессы афегации существенно влияют на структуру и свойства получаемых наноматериалов. [c.30]

    Гетерогенные равновесия описываются обобщенным дифференциальным уравнением Ван-дер-Ваальса или его аналогами, не зависящими от свойств межфазной поверхности, т. е. не учитывающими поверхностных явлений, как показано А. И. Русановым [11]. Это обусловлено тем, что двухфазная система описывается двумя дифференциальными термодинамическими уравнениями, в которых имеется одинаковый член, характеризующий поверхностное натяжение межфазной границы ц счезаюп ий [c.24]

    Возникновение адгезионного взаимодействия молсет быть обусловлено силами Ван-дер-Ваальса, водородными, ковалейг-ными и другими связями [13, т. 1, с. 22]. Величину этих сил, их вклад в адгезию установить трудно, однако, косвенно о их наличии и эффективности можно судить по значению краевого угла смачивания и механическим свойствам соединений. Между поверхностным натяжением и краевым углом смачивания наблюдается зависимость [14, с. 78], не учитывающая, правда, ряд [c.106]

    Уравнение Гиббса связывает между собой основные параметры, характеризующие адсорбцию, — Г, с, Г и о, оно определяет возможность протекания адсорбции как самопроизвольного процесса за счет снижения поверхностного натяжения. В зависимости от природы адсорбционных сил различают физическую и химическую адсорбцию. При этом химическую адсорбцию называют хемосорбцией. При физической адсорбции радиоактивные вещества сохраняют свою индивидуальность, и взаимодействие между радиоактивным веществом и адсорбентом осуществляется за счет межмолекуляр-ных сил (сил Ван-дер-Ваальса). Поэтому физическая адсорбция обратима, практически не зависит от химического соединения радионуклида и уменьшается с ростом температуры. Теплота, выделяющаяся при физической адсорбции, составляет всего 10-40 кДж/моль, в то время как при хемосорбции она достигает 400 кДж/моль и более. В результате хемосорбции молекулы или ионы радиоактивного вещества образуют с адсорбентом, т. е. с загрязненным объектом, поверхностные химические соединения, и, следовательно, хе-мосорбцию можно рассматривать как химическую реакцию на поверхности раздела фаз. [c.185]

    Соотношения, которые вывел Шустер (F. S huster, 1926) для зависимости поверхностного натяжения от постоянных Ван-дер-Ваальса и а  [c.195]

    Уплотнение за счет пограничного скольженВя может быть вызвано силами Ван-дер-Ваальса, остаточными напряжениями от прессования, а также, что наиболее вероятно, си.чами поверхностного натяжения. Силы поверхностного натяжения эквивалентны капиллярному давлению, которое при малых размерах частиц (<10 жк), а следовательно, и при малых размерах пор, может достигать существенных величин. Сцепление же частиц между собой в начальный период спекания очень мало, сопротивление скольжения по границам также мало, следовательно, даже при небольших напряжениях можно ожидать больших скоростей уплотнения. [c.171]

    Казалось бы, эмпирический подход к решению вопроса о связи поверхностного натяжения чистых жидкостей с различными физико-химическими свойствами их давно исчерпал себя в работах таких выдающихся исследователей, как Д. И. Менделеев, Р. Этвеш, Ван-дер-Ваальс, А. И. Бачинский, Сагден и другие., Нр в действительности это далеко не так. Для растворов, и осо-№нно многокомпонентных, было сделано сравнительно мало попыток, позволяющих установить эмпирическую связь поверхностного натяжения раствора с его физико-химическими характеристиками или такими параметрами, как температура, давление и пр. Несмотря на это среди немногочисленных работ, выполненных в этой области, имеются исследования, в которых обсуждаются весьма перспективные способы описания поверхностных явлений в растворах, опирающиеся на законы аддитивности таких величн, как парахор, молекулярная рефракция и другие. [c.80]


Смотреть страницы где упоминается термин Ван-дер-Ваальса поверхностного натяжения: [c.290]    [c.49]    [c.16]    [c.25]    [c.23]    [c.49]    [c.503]    [c.128]    [c.54]    [c.46]    [c.14]    [c.97]    [c.246]    [c.14]    [c.97]    [c.359]    [c.70]    [c.72]    [c.94]   
Химия (2001) -- [ c.97 ]




ПОИСК





Смотрите так же термины и статьи:

Ван-дер-Ваальса



© 2025 chem21.info Реклама на сайте