Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Массопередача насадочных

    Значительную переработку претерпела четвертая часть, где рассмотрены аппараты для проведения процессов массопередачи. При анализе работы аппаратов широко использован метод математического моделирования. Систематизированы математические модели различных типов аппаратов. Расширены вопросы, связанные с оформлением новых методов проведения процессов массопередачи насадочные эмульгационные колонны и аппараты с внешним подводом энергии. Заново представлены обш,ие закономерности гидродинамики барботажного слоя, влияние структуры потоков на эффективность тарельчатых колонн. Дана оценка эффективности массопередачи на тарелках прн разделении многокомпонентных смесей, систематизированы математические модели тарельчатых ректификационных колонн. [c.4]


    В результате исследования [561 было показано, что аппарат устойчиво работал при изменении скорости газа в кольцевом сечении между цилиндром-распределителем и цилиндром-сепаратором Wx = 1,8 -f-7,7 м/сек. Нагрузка по жидкости изменялась в пределах 0,84 — 8,33 кг/м -сек. При этом унос жидкости не наблюдался. Потеря напора не превосходит потери напора барботажных аппаратов. Объемный коэффициент массопередачи в 5—6 раз выше объемных коэффициентов массопередачи насадочных колонн. Описанное контактное устройство имеет существенное преимущество перед аппаратом Киршбаума и Штора, так как в нем достигается вращательное движение потока пара, способствующее усилению массообмена. [c.140]

Рис. 2. Зависимость коэффициентов дробления, задержки и фактора массопередачи насадочной пульсирующей колонны от интенсивности пульсации [9]. Рис. 2. <a href="/info/356991">Зависимость коэффициентов</a> дробления, задержки и <a href="/info/153186">фактора массопередачи</a> насадочной <a href="/info/1086610">пульсирующей колонны</a> от интенсивности пульсации [9].
    Если две неравновесные фазы, паровую и жидкую, привести во взаимный контакт и создать возможно более благоприятные условия для массопередачи, а затем после обмена веществом и энергией отделить эти фазы одну от другой каким-нибудь механическим способом, то всю такую операцию в целом принято называть одной ступенью контакта. Механизм работы тарельчатой колонны, взятый в чистом виде, состоит в том, что ее тарелки действуют как ряд вполне самостоятельных ступеней контакта для встречающихся и перемешивающихся паровых и жидких потоков. Существенно, что на тарелках колонны истинный противоток паров и флегмы полностью нарушается (чего не происходит в насадочной колонне), и контактирующие фазы обмениваются веществом и энергией вследствие стремления взаимодействующих сред к состоянию равновесия. [c.122]

    Связь между локальной эффективностью практической тарелки и определяюш ими переменными процесса, от которых зависит массопередача, устанавливается на основе уподобления взаимодействия контактирующих на тарелке фаз массообмену в насадочной колонне. [c.210]

    При непрерывной противоточной экстракции процесс проводят в колонных аппаратах насадочного или тарельчатого типа. Процесс массообмена в них отличается низкой эффективностью. Для интенсификации массопередачи в подобных аппаратах используют устройства принудительного перемешивания фаз. [c.102]


    Размеры оборудования. При расчете размеров абсорбционного оборудования поперечное сечение аппарата и его высота определяются раздельно. Строго говоря, все существующие для этого методы расчета являются по существу эмпирическими и зависят от конструкции и внутреннего устройста абсорбера. Поперечное сечение насадочных колонн находят гидравлическим расчетом в условиях захлебывания, а сечение тарельчатых колонн—путем расчета в условиях уноса жидкости газом или на основании выбранного коэффициента полезного действия ступени. Ни один из этих методов расчета не связан непосредственно со скоростью процесса абсорбции, за исключением того, что поперечное сечение определяет линейную скорость потоков, которая в свою очередь влияет на скорость массопередачи. [c.182]

    Изучение гидродинамики и массопередачи в насадочных абсорбционных колоннах. [c.279]

    В данной главе приведены примеры расчетов насадочного и тарельчатого абсорберов по основному кинетическому уравнению массопередачи. Другие методы рассмотрены в главе VII на примере расчета ректификационных колонных аппаратов. [c.102]

    Массообмен. Массопередача при пульсации происходит гораздо интенсивнее и в несколько раз скорее, чем в насадочных колоннах [61. 76, 130, 1421 и без пульсации [32, 38, 117, 1291. Вы- [c.359]

    В насадочных колоннах процесс разделения описывается дифференциальными уравнениями массопередачи. Такая форма описания используется также для некоторых специфических случаев разделения в тарельчатых колоннах так, например, при ректификации смесей компонентов с небольшой относительной летучестью в колоннах с большим числом тарелок. [c.72]

    Массопередача в насадочных колоннах [c.408]

    На рис. 208 представлена зависимость коэффициента массопередачи от гидродинамических режимов в насадочных абсорбционных колоннах и интенсивность перемешивания в насадке. [c.420]

    Помимо характера распределения объемов ячеек для расчета динамики процесса абсорбции в насадочном аппарате с помощью модели (7.140) необходимо знать входящие в нее параметры число ячеек N, коэффициент массопередачи ку, а также коэффициенты обмена / j и к . [c.419]

    Эти зависимости были положены в основу определения ко-э4)фициентов массоотдачи и р у. Накоплен большой экспериментальный материал о работе различных контактных устройств - пленочных, насадочных и барботажных тарельчатых колонн с использованием смесей различного класса. Как правило, данные получены в области средних концентраций в режиме полного орошения. При этом было отмечено, что зависимость коэффициента массопередачи монотонно возрастает. [c.137]

    Р а м м В. М., Ч а г и н а 3. В., Исследование массопередачи в жидкой фазе при абсорбции газов в насадочных колоннах. Хим. пром., № 12, 910 [c.587]

    Найти коэффициент массопередачи в насадочном скруббере для поглощения ацетона из воздуха водой, расход которой составляет 4000 кг/ч. Смесь воздуха с парами ацетона содержит 5% (об.) ацетона, причем расход чистого воздуха 2000 м ч. Степень поглощения ацетона при 20 °С достигает 98,2%. Абсорбционная башня заполнена керамическими кольцами размерами 25 X 25 X X 3 мм, слой которых имеет высоту 18 м. Скорость газа в полном сечении башни принять на 20% меньше скорости, соответствующей началу эмульгирования. [c.222]

    Основными размерами насадочной колонны являются высота рабочей части Н (высота слоя насадки) и диаметр колонны Из выше изложенного известно, что величину Н можно найти по преобразованному уравнению массопередачи [c.334]

    Пульсационные экстракторы. Ввод дополнительной энергии в двухфазный поток может быть осуществлен также приданием возвратно-поступательного движения (пульсации) жидкостям в экстракторах, называемых пульсационными. Пульсация кидкостей увеличивает турбулизацию потоков и степепь дисперсности фаз, повышая тем самым эффективность массопередачи в насадочных экстракторах или экстракторах с ситчатыми тарелками, [c.381]

    Смачиваемость насадок. При расчете насадочных колонн следует учитывать неполное смачивание насадки, вследствие чего в процессе массопередачи участвует не вся поверхность насадки, а лишь некоторая активная ее часть. [c.609]

    Массопередача в насадочных абсорберах [c.612]

    Общим недостатком всех экстракторов с механическими мешалками является затруднительность эксплуатации их при обработке сильно химически агрессивных или радиоактивных веществ. Этого недостатка лишены пульсационные (ситчатые и насадочные) экстракторы, сочетающие большую производительность с высокой интенсивностью массопередачи. Пульсационные экстракторы успешно применяются в процессах разделения и получения.редких и рассеянных элементов. Использование этих аппаратов в многотоннажных производствах сопряжено с трудностями, обусловленными необходимостью сообщения вибраций значительным массам жидкости. [c.650]

    Насадочные колонны. Если линия равновесия является прямой, поверхность насадки определяется из общего уравнения массопередачи [c.327]


    Однако возможны и другие методы выражения движущей силы и кинетики процесса. В некоторых случаях (например, при расчете насадочных аппаратов) оказывается удобным выражать движущую силу процесса массопередачи косвенно через число Л/ единиц переноса, а кинетику процесса — высотой единицы переноса (ВЕП). [c.304]

    Объемные коэффициенты массоотдачи и массопередачи. Поверхность контакта фаз, к единице которой отнесены коэффициенты массоотдачи и массопередачи, в большинстве случаев трудно определить. Как будет показано ниже, в барботажных массообменных аппаратах эта поверхность представляет собой совокупность поверхностей брызг, пены и пузырей в насадочных аппаратах — некоторую активную часть геометрической поверхности насадки, смачиваемую жидкостью. Поэтому коэффициенты массоотдачи и массопередачи часто относят не к поверхности контакта фаз Р, к рабочему объему аппарата V, который связан с поверхностью зависимостью [c.409]

    Аппараты, в которых осуществляются абсорбционные процессы, называют абсорберами. Как и другие процессы массопередачи, абсорбция протекает на поверхности раздела фаз. Поэтому абсорберы должны иметь развитую поверхность соприкосновения между жидкостью и газом. По способу образования этой поверхности абсорберы можно условно разделить на следующие группы 1) поверхностные и пленочные 2) насадочные 3) барботажные (тарельчатые) 4) распыливающие. [c.442]

    Возрастание интенсивности массопередачи в насадочных пульсационных экстракторах может быть приближенно оценено величиной ВЕП, рассчитываемой по уравнению [c.549]

    Если две различные неравновесные фазы нривести в контакт друг с другом и создать условия для массопередачи, а затем после обмена веществом и энергией отделить эти фазы одну от другой каким-нибудь механическим способом, то вся операция в целом носит название одной ступени контакта. Механизм работы колпачковой колонны, взятый в чистом виде, выражается в том, что ее тарелки действуют как ряд вполне самостоятельных ступеней контакта встречающихся и перемешивающихся на тарелке жидких и паровых потоков. Имеет существенное значение тот факт, что на тарелках колонны истинный противоток наров и флегмы полностью нарушается (чего в насадочной колонне не происходит) и контактирую1цие фазы обмениваются веществом и энергией вследствие стремления взаимодейст1 ующих сред к состоянию равновесия. [c.78]

    Из многочисленных экспериментальных данных известно, что в распылительных, насадочных и тарельчатых колоннах объемный коэффициент массопередачи линейно возрастает с увеличением скорости подачи дисперсной фазы Кд в широком диапазоне изменения последней. Линейная зависимость лго от Кд может наблюдаться, например, в том сл)Д1ае, когда размеры капель и скорость их подъема не зависят от Кд, что подтверждается при небольших значениях удерживающей способности (УС) прямыми экспериментами по фотографированию капель. В этом случае коэффициент массопередачи к не зависит от Кд, а величина удельной межфазной поверхности раздела а, пропорциональная числу капель в единице объема, линейно возрастает с увеличением Гд. Однако линейная зависимость ко от Гд может иметь место не только в этом частном случае, но и тогда, когда возрастание а компенсируется уменьшением к. В связи с этим в работах [349-351 ] нами было предложено использовать для расчета скорости массопередачи и высоты колонны приведенные коэффициенты массопередачи [c.220]

    Гильдеиблат И. А., Гурова Н. М., Рамм В. М. Влияние расиределения орошения в насадочных абсорберах на эффективность массопередачи в жидкой (baie — Химическая промышленность , 1968, К 3, с. 59—63. [c.263]

    Аксельрод Ю. В.,Дильман В. В.,Алекперова Л. В.,Титель-м а н Л. И., Д и н-В э й. Труды научно-исследовательского и проектного института азотной промышленности и продуктов органического синтеза, вып. 6, 1971, стр. 261. Коэффициенты массопередачи в промышленных насадочных абсорберах моноэтаноламиновой очистки. [c.267]

    Онда К-,Нагасава М.,Такахаси М., Кагаку когаку, 31, 716 (1967). Коэффициенты массопередачи в насадочной колонне при абсорбции, сопровождаемой химической реакцией второго порядка. [c.277]

    Пример 6. Определить коэффициенты массоотдачи, общую высоту единицы переноса и коэффи1,иент массопередачи для процесса абсорбции в насадочной К0л(1нне, рассмотренного в Примерах 3 и 5. [c.52]

    Изучение скорости массо- и теплообмена в насадочных колоннах являлось объектом многочисленных исследований [82—86]. Однако сопоставлепие критериальных уравнений, полученных различными авторами, не давало [87—89] оснований для оптимизма. Тем пе менее накопленпе эксперпментального материала позволило установить ряд закономерностей, характеризующих процессы переноса в насадочных колоннах. Прежде всего, интерес вызывали данные о квазпстацпопарном характере массопередачи в насадочной колонне [89—93]. Увеличение высоты слоя насадки практически пе оказывало влияния на величину коэффициента массопередачи. Наряду с этим известно, что увеличение времени пребывания дисперсной фазы в колонне при заполнении ее насадкой также не приводит к снижению коэффициента массопередачи [94] при лимитирующем сопротивлении дисперсной фазы. Массопередача в дисперсной фазе может иметь квазистационарный характер при условии, что суммарный процесс массопередачи аддитивно складывается из ряда самостоятельных процессов подобно процессу в тарельчатой колонне. [c.266]

    При записи уравнений математического описания процесса абсорбции использованы следующие условные обозначения информационных переменных а —удельная поверхность насадки — диаметр насадки О —расход газа Л — удерживающая способность насадки Н — высота ячейки полного перемеши-. вания К — общий коэффициент массопередачи Kv — объемный коэффициент массопередачи L — расход жидкости т. — коэффициент фазового равновесия N — общее число ячеек полного перемещивания Шг — скорость газа, рассчитанная на полное сечение колонны а)инв — скорость газа в точке ицверсии х — концентрация компонента в жидкой фазе у — концёнтрация компонента в газовой фазе 2 —общая высота насадочного слоя 2 —текущее значение высоты наса-дочного слоя. Индексы вх — вход вых —выход г —газ ж —жидкость инв — инверсия 1, 2,. .., п — номер ячейки полного перемешивания О — начальное значение р — равновесная величина ст — статическая величина. [c.89]

    Гидродинамические характеристики точек инверсии для различных фязавых систем. Точка инверсии является наиболее характерной для описания гидродинамики насадочных колонн. При достижении точек инверсии массообмен резко возрастает, что значительно интенсифицирует процессы массопередачи. [c.390]

    Расчет насадочных ректификационных колонн. Для насадочных колонн при скоростях паров ниже скоростей, соответствующих подвисанию жидкости, высоту единицы нерено.са определяют по формулам, приведенным на стр. 612. Наибольшее значение коэффициента массопередачи достигается при оптимальной скорости паров, которая соответствует началу подвисания и может быть определена по уравнению (17-16). Оптимальная скорость изменяется по высоте колонны в соответствии с изменением массовых скоростей пара и жидкости и их плотности. [c.693]

    Одиако не вся слюченная поверхность активна для массопередачи, так как в определенных точках слоя насадки (например, в точках контакта между насадочными телами) могут образовываться застойные зоны. [c.462]

    Невысокая эффективность объясняется, по-видимому, особыми свойствами системы масло-фенол. Низкое межфазо-воё натяжение на границе раздела /1-5 мН/м/ приводит к образованию стойкой эмульсии при незначительном гидродинамическом воздействии, а малая разность плотностей /около 120 кг/мЗ/ замедляет расслаивание взаимодействующих фаз. Анализ работы колонн насадочного типа показывает, что в них отсутствуют условия для скопления капель эмульсии и последующей их коалесценции в слое насадки и межтарелочном пространстве. Достичь высоких значений коэффициента массопередачи можно только с помощью повторной коалесценции и редиспергирования [13]. [c.24]

    Влияние давления на размывание в капиллярной хроматографии несколько отлично от его действия в насадочных колонках, что связано с большей ролью внешнедиффузионной массопередачи в первом случае. Поэтому увеличение давления в капиллярной хроматографии, по крайней мере для сильно сорбирующихся веществ, приводит к возрастанию величины Н, а для слабо сорбирующихся Н не зависит от давления. При малых скоростях потока в обоих случаях вследствие определяющего влияния продольной диффузии Н уменьшается с ростом давления. [c.139]

    Количественная оценка процессов, протекаюш,их в насадочной колонне, возможна по указанным причинам лишь полуэм-пнрическим путем с помош,ью теории подобия. Чилтон и Кольборн [121 ] ввели для насадочных колонн понятие числа единиц переноса /1д. Оно учитывает тот факт, что в насадочной колонне массо-и теплообмен в отличие от тарельчатой колонны протекают непрерывно в виде бесконечно малых элементарных ступеней разделения. Для теплопередачи движущей силой является разность температур, а для массопередачи — разность парциальных давлений и концентраций распределяемого вещества. Исходя из разности концентраций, соответствующей положению кривой равновесия и рабочей линии, определяют безразмерную величину [59]. [c.141]


Смотреть страницы где упоминается термин Массопередача насадочных: [c.82]    [c.216]    [c.286]    [c.288]    [c.334]    [c.641]    [c.650]   
Абсорбция газов (1966) -- [ c.455 ]

Жидкостная экстракция (1966) -- [ c.555 ]




ПОИСК





Смотрите так же термины и статьи:

Карпачева, С. Ф. Медведев, Е. П. Родионов, Киселева. Массопередача при экстракции и реэкстракции уранилнитрата в насадочных колоннах

Коэффициент массопередачи в насадочных скрубберах

Массопередача

Массопередача в насадочных колоннах

Массопередача в экстракторах насадочных

Массопередача массопередачи

Массопередача при экстракции в насадочных колоннах

Массопередача при экстракции в распылительных и насадочных колоннах

Массопередачи коэффициенты насадочных колонн

Насадочные абсорберы массопередача

Насадочные аппараты коэффициент массопередачи

Основные уравнения массопередачи. Уравнения массопередачи для насадочных диффузионных аппаратов. Общее число единиц переноса Ступени изменения концентрации. Определение теоретического числа ступеней изменения концентрации графическим методом Подобие диффузионных процессов



© 2025 chem21.info Реклама на сайте