Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Последовательные и параллельные схемы реакторов

Рис. 79. Схема с параллельно-последовательным включением адиабатических реакторов а — основной процесс б — сопряженный процесс. Рис. 79. Схема с <a href="/info/1456031">параллельно-последовательным включением</a> <a href="/info/25767">адиабатических реакторов</a> а — <a href="/info/24378">основной процесс</a> б — сопряженный процесс.

    Схемы с последовательно-параллельным соединением реакторов.. [c.151]

    ПОСЛЕДОВАТЕЛЬНЫЕ И ПАРАЛЛЕЛЬНЫЕ СХЕМЫ РЕАКТОРОВ [c.192]

    В 4.1. ПОСЛЕДОВАТЕЛЬНЫЕ И ПАРАЛЛЕЛЬНЫЕ СХЕМЫ РЕАКТОРОВ 4.1.1. Расчетные формулы [c.114]

    Получите математическую модель процесса в реакторе идеального вытеснения при протекании сложной реакции а) с параллельной схемой превращения б) с последовательной схемой превращения Покажите график изменения концентраций компонентов по длине реактора и объясните его вид (почему концентрации увеличиваются, уменьшаются, не меняются и Т.Д.). [c.184]

    Рассмотрим еще один пример. Пусть в схеме имеется последовательно-параллельная совокупность реакторов и требуется найти оптимальное сочетание числа параллельных ветвей с числом реакторов в каждой ветви при сохранении остальной структуры схемы неизменной. Легко видеть, что применение двухуровневой процедуры синтеза приведет к необходимости решения на втором уровне задачи (VI 1,8), где — число ветвей ищ — число реакторов в каждой ветви. Здесь также можно использовать метод Гаусса — Зейделя. [c.249]

    Технологическая схема установки приведена на рис. VI.3. Сырье из секции подготовки (на схеме не показана) подается насосом 1 в холодильник 2 (здесь хладагент — испаряющийся изобутан), а затем равными порциями вводится параллельно в пять зон реактора 6. В первую зону реактора 6 вводится циркулирующая и свежая серная кислота насосом 4 и проходит последовательно все зоны реактора. [c.61]

    Несмотря на сравнительно небольшие размеры, эта схема интересна тем, что в ней присутствуют все элементы сложных схем 1) аппараты различных типов (реакторы, экстракторы, смесители) 2) аппараты, расположенные последовательно (параллельно) 3) рецикл 4) аппараты (экстракторы), расчет которых-требует итерационных процедур. [c.57]

    Использование этого подхода к задаче оптимизации последовательности реакторов идеального смешения [И, с. 50] показало его эффективность. На этом примере ясно видна также польза введения дополнительных поисковых переменных для распараллеливания вычислений в случае использования многопроцессорных ЭВМ или многомашинных комплексов. Благодаря последовательной структуре схемы (см. рис. 22) здесь может эффективно использоваться только одна ЭВМ. Введение же дополнительных поисковых переменных позволяет параллельно обрабатывать отдельные участки на нескольких ЭВМ. [c.136]

    В начальный период работы установки, когда активность катализатора еще высокая, можно рекомендовать параллельную схему работы реакторов. С понижением активности катализатора для сохранения глубины превращения рекомендуется пользоваться последовательной схемой. [c.44]


    Кроме перечисленных выше вопросов, были рассмотрены и решены также вопросы, связанные с выбором состава газовой смеси на входе в реактор, с расположением реакторов (параллельное или последовательное) в схеме процесса, а также ряд других вопросов. [c.96]

    На нескольких заводах в США и в Англии двойной суперфосфат получают непрерывным методом по схеме, изображенной на рис. 73. Реакция между измельченным фосфоритом и фосфорной кислотой, содержащей 38% Р2О5, осуществляется в трех непрерывно действующих реакторах 3, через которые пульпа проходит последовательно. Из последнего реактора пульпа поступает в два параллельно работающих смесителя 4, в каждом из которых имеются два горизонтальных вала с лопастными мешалками. Здесь пульпа смешивается с мелкой фракцией продукта, получаемого после сушки и рассева, причем образуются влажные гранулы, направляющиеся в барабанную сушилку 5. Сухие гранулы рассеиваются в грохоте 10 на три фракции. Средняя фракция является продуктом крупная — [c.149]

    VI-4. Завод располагает реактором, в котором степень превращения вещества А достигает 90%. Был приобретен второй реактор, аналогичный первому. При каком соединении реакторов (последовательном или параллельном) и сохранении первоначальной степени превращения производительность технологической схемы будет больше  [c.158]

    Примером параллельной схемы может служить группа параллельно работающих теплообменников группа насосов, подающих жидкость в один коллектор группа параллельно рабо тающих реакторов. Параллельные схемы характерны для крупного химического производства и широко распространены в химической промышленности. Это связано, во-первых, с их повышенной надежностью, так как выход из строя одного из аппаратов не нарушает работы всей системы. Во-вторых, параллельные схемы обладают большой гибкостью, позволяющей в одной технологической схеме применять оборудование разной производительности, т. е. в разных последовательных звеньях производства использовать разное число параллельно работающих аппаратов. Такие схемы, называемые коллекторными, позволяют обеспечить непрерывность общего технологического потока в ряде производств, в состав которых входят отдельные агрегаты, работающие по периодической или полу-периодической схеме. [c.12]

    Заменив в формулах (Х1.52), (Х1.53), (Х1.54) и (Х1.55) время реакции 1 удельной энергией 1//о, можно вычислить константы и 2 и по их средним значениям сравнить опытные и вычисленные, значения ос. Как оказалось, последовательная схема удовлетворительно описывает найденную на опыте зависимость а=/(1//о) только для цельностеклянного реактора. Для описания кинетики образования — разложения перекиси водорода в стеклянно-металлических реакторах схема (Х1.49) не годится. В связи с этим в дальнейшем была испытана схема двух последовательно-параллельных реакций. В соответствии со сказанным ранее ее можно представить в виде [c.320]

    Конструкция реактора и схема его работы описаны выще. Свежее сырье подается во все 5 секций реакционной зоны равными параллельными потоками, а рециркулирующий изобутан и кислота вводятся в первую секцию и затем последовательно проходят все секции реактора. [c.189]

    VI-3. При каких значениях порядка реакции, коэффициента расширения и степени превращения схему с двумя последовательно соединенными реакторами идеального вытеснения целесообразнее эксплуатировать, чем схему с параллельным соединением тех же реакторов  [c.158]

    Схемой предусматривается как последовательное, так и параллельное подключение аппаратов сероочистки и конверсии. Это позволит исключить необходимость остановок установки на период замены катализаторов и хемосорбентов в реакторах. Предпочтительней последовательное подключение аппаратов, поскольку при этом уменьшается опасность неравномерного распределения потока газа по сечению аппаратов и отрицательное влияние пристеночного эффекта (проскок газа вдоль стенки). [c.61]

    При осуществлении непрерывных процессов, а также для обеспечения необходимых температурных условий на различных стадиях реакции отдельные аппараты компонуются в каскад реакторов. В таком каскаде жидкость проходит последовательно через все аппараты, а газ может подаваться последовательно или параллельно в каждый реактор. В случае, если количество газа, рассчитанного по стехиометрическому уравнению реакции, недостаточно для обеспечения оптимальных гидродинамических условий в каждом аппарате, а разбавление инертным газом нежелательно, каскад может работать по замкнутой циркуляционной схеме (рис. 45). Согласно этой схеме, основная масса газа транспортируется через все аппараты каскада циркуляционным компрессором 1. Свежий газ в количестве, достаточном для реакции, вводится в циркуляционной контур компрессором 2. На выходе из 6 83 [c.83]

    Технологическая схема процесса получения винилтолуола на основе толуола и ацетилена представлена на рис. 4.4. Потоки толуола и Н2804 с добавкой НеЗО из дозатора / подают последовательно в каскад реакторов 2 с мешалками, в которые параллельно поступает ацетилен. После отделения катализатррного слоя в разделителе 5 алкилат нейтрализуют в аппарате 4 и разделяют в комбинированной колонне /О, откуда дитолилэтан подают через перегреватель 5 в секцию крекинга 6. Катализат крекинга через систему утилизации теплоты и сепарации (7—9) поступает в колонну 10 и в колонны И и /2 для выделения толуола, дитолилэтана, винилтолуола и побочно образующегося при крекинге ДТЭ этйлтолуола. Слой катализатора из разделителя 3 направляют в секцию регенерации 13. [c.109]


    Так, для организации производства этиленгликоля мощностью 5000 т/год по раствору, содержащего около 80% масс, гликолей и обеспечения стабильной работы катализатора в течение длительн010 времени (более 8000 час), необходим реакторный узел с рассредоточенной подачей оксида этилена с числом точек ввода оксида равным, как минимум, 3. Для реализации данного решения на производстве нами была предложена технологическая схема, включающая каскад последовательно соединенных реакторов не равного объема с гюдачей оксида этилена в смесители, установленные перед каждым реактором каскада. При этом реакторы каскада могут содержать один или несколько модулей (например, модулей разработанных нами в [6]), соединенных в последовательно параллельную цепь. [c.5]

    С увеличением производительности технологических линий при соответственном увеличении объемов реакторов перемешивание и теплосъем существенно усложняются. Поэтому не случайно такие фирмы, как Хехст , Монтэдисон и другие, используют каскады из 2—3 реакторов. Этим обеспечиваются, с одной стороны, сравнительно небольшие габариты каждого из реакторов, с другой стороны, возможность расширения выпускаемого ассортимента продукции за счет использования различных схем обвязки реакторов и их последовательной или параллельной работы. Параллельную схему работы реакторов (на различных режимах) часто используют для регулирования ММР конечного продукта. Последовательная схема, кроме лучших условий доработки катализаторов, позволяет получать сополимеры различного состава и структуры. Надежность работы технологической линии, обеспечивается не только качеством и техническим уровнем используемых технологии и оборудования, но и системой автоматического контроля и управления. Наиболее успешно эта задача решается с помощью автоматизированных систем управления технологическим процессом (АСУ ТП). [c.137]

    Процесс осутцествляется в три ступени реакторы I и II ступени включены последовательно, а два реактора Ш ступени включены параллельно, один из которых может служить резервным. В первых двух ступенях протекают в основном реакции дегидрирования нафтеновых углеводородов и изомеризации парафиновых углеводородов. На последней ступени в более жестких условиях интенсифицируются реакции дегидроциклизации парафинов и гидрокрекинга, сопровождаемые отложением кокса на катализаторе. Для увеличения длительности рабочего цикла предусмотрена возможность отключения одного параллельно работающего реактора Ш ступени с целью проведения в нем регенерации катализатора без прекращения эксплуатации всей установки. При снижении же активности катализатора в реакторах I и II ступени прекращается подача сырья и регенерацию катализатора проводят во всех реакторах одновременно. Таким образом, указанная схема риформинга является промежуточной между технологиями с регенерацией катализатора во всех реакторах установки и регенерацией катализатора в резервном реакторе (процесс ультраформинга). [c.62]

    При анализе реакционноспособного диоксида азота его целесообразно бывает перевести в азот, что упрощает количественный анализ и не требует специальной коррозионноустойчивой аппаратуры и детектора. В работе [51] описана методика разделения примесей оксидов азота, углерода и постоянных газов с использованием реакционной хроматографии и схемы с последовательно параллельными колонками. Анализируемая проба сначала проходит через колонку с углем СКТ (200Х Х0,4 см), на которой при 145°С происходит разделение на три зоны [первая — постоянные газы и оксид азота (П), вторая — диоксид азота (IV) и диоксид углерода и третья — оксид азота (I)]. Затем первая зона при комнатной температуре разделяется на второй колонке на компоненты, включая все постоянные газы и оксид азота (П), а вторая и третья зоны поступают в реактор, заполненный медью, в котором при 900 °С происходит восстановление оксидов азота до азота. Затем в колонке с углем СКТ, последовательно соединенной с реактором, происходит разделение диоксида углерода и азота, образовавшегося из диоксида азота (IV), т. е. второй общий пик разделяется на отдельные компоненты. [c.236]

    При использовании данных непрерывного процесса для идентификации модели наряду с задачей определения неизвестных констант может решаться и задача сжатия , упрощения модели. При этом наиболее интересен прием экви-валентнрования, т. е. замены реальной модели ее упрощенным с точностью до известных экспериментальных данных эквивалентом. Эту задачу можно решать различными способами, однако наиболее удачным является замена рассматриваемого реактора реакторами идеального смешения, соединенными последовательнопараллельно [1, 3, 4]. При этом существенно облегчается анализ как стационарных, так и нестационарных режимов, поскольку обеспечивается возможность вычисления по рекуррентным формулам. Именно поэтому в данной работе рассмотрены модели преимущественно такого типа. Можно полагать, что модель идеального смешения — это тот основной модуль, с помощью которого (задавая граф последовательно-параллельного соединения) можно представить любую реакторную систему. Отметим, что благодаря однородности такой эквивалентной схемы можно решать вопросы оптимизации ее структуры, тогда как в других случаях эта задача практически неразрешима .  [c.81]

    Технологическая схема реакторного-отделения в зна чительной степени определяется применяемой конструкцией реактора. Для каждого из реакторов имеются особенности в подаче сырья, рециркулирующего изобутана, хладагентов и кислоты. Сырье и рециркулирующий изобутан могут подаваться в реакторы параллельно или последовательно. Хладагенты отнимают тепло от реакционной смеси снаружи реактора или непосредственно в реакционной зоне. [c.114]

    Пример VI-4. Установка, показанная на рпс. YI-7, состоит из трех реакторов и, (еальиого вытеснения, соедииепиых в виде схемы с двумя параллельными потоками. Поток D проходит через последовательно соединенные реакторы объемами 5 и 3. и , потрк Е — через один реактор объемом 4 Какую долю от общей нагрузки установки должен составлять поток D -  [c.144]

    Технологическая схема процесса сернокислотного алкилирования в каскадном реакторе приведена на рис. 4.6. Свежая и циркулирующая кислота, а также потоки, содержащие изобутан, проходят последовательно через все секции реактора (обычно 6—8 секций). Свежий изобутаи после очистки в системе 1 вводят в деизобутанизатор 2 и затем по линиям II и И направляют в каскадный реактор 3. Олефиновое сырье после очистки в системе 4 по линиям V—VII подают параллельными потоками в каждую секцию реактора 3. Давление в реакторе снижается от 0,15—0,20 МПа в первой секции реактора до 0,04—0,08 МПа в последней. После разделения в отстойных зовах реактора углеводородную часть продуктов алкилирования VIII нейтрализуют и затем, промыв, вводят по линии IX в деизобутани- [c.120]

    Описанная принципиальная схема в сущности положена в основу всех современных процессов гидрокрекинга над стационарными катализаторами, Различие заключается лищь в применении реакторов со значительно большими диаметрами, работающих при более низких давлениях и включаемых, как правило, не последовательно, а параллельно (для снижения перепадов давления в реакторных блоках). Кроме того, во всех [c.266]


Смотреть страницы где упоминается термин Последовательные и параллельные схемы реакторов: [c.51]    [c.321]    [c.174]    [c.130]    [c.286]    [c.93]    [c.51]    [c.292]    [c.41]    [c.42]    [c.162]    [c.134]    [c.292]    [c.173]    [c.119]    [c.155]    [c.121]    [c.114]   
Смотреть главы в:

Примеры и задачи по общей химической технологии -> Последовательные и параллельные схемы реакторов

Примеры и задачи по общей химической технологии  -> Последовательные и параллельные схемы реакторов




ПОИСК





Смотрите так же термины и статьи:

МЬ1 Параллельная схема

Последовательно-параллельные

Последовательность реакторов



© 2025 chem21.info Реклама на сайте