Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коэффициент в газовой фазе

    Малые линейные размеры объемов газа между элементами слоя позволяют пренебречь излучением газовой фазы. Эффективный коэффициент теплопроводности А,оэ нельзя выразить как некоторую сумму отдельных составляющих, поскольку в [c.103]

    Итак, при расчете коэффициента теплопроводности зернистого слоя с неподвижной жидкой или газовой фазой рекомендуются формулы (IV.3), и (IV.4), а также графики рис. IV 1. При низких температурах удобнее пользоваться формулой [c.106]


    Первый член в последней скобке представляет относительное сопротивление жидкой, а второй — газовой фазы. Поскольку коэффициенты массоотдачи /Ср и /с являются функциями многих переменных, то из (11.43) можно заключить, что на сопротивление массопередаче воздействует не только равновесный коэффициент т, но и другие условия процесса. [c.77]

    Компоненты, поглощенные в процессе абсорбции, должны быть выделены из насыщенного абсорбента в процессе десорбции. В результате десорбции получаются целевые компоненты в виде продукта и регенерированный абсорбент, возвращаемый в процесс абсорбции. Чем полнее отпарены целевые компоненты из абсорбента, тем выще коэффициент извлечения их в процессе абсорбции. Чтобы целевые компоненты могли перейти в процессе десорбции из насыщенного абсорбента в газовую фазу, концентрация их в ней должна быть ниже равновесной. Для этого в десорбер подают инертный отпарной газ, не содержащий целевых компонентов и (или) подводят теплоту в нижнюю часть десорбера. [c.85]

    Коэффициент Генри представляет собой константу вещества, которая при заданной паре веществ теоретически зависит только от температуры и не зависит от давления и присутствия других компонентов в газовой фазе. [c.178]

    Это дает для коэффициента активности растворенного вещества по отношению к газовой фазе (/) = ) [c.457]

    Диффузия в порах будет приближаться к диффузии в газовой фазе, когда средняя длина свободного пробега диффундирующих молекул меньше радиуса пор (при определенных температуре и давлении). В этих условиях большое влияние на диффузию будут оказывать столкновения диффундирующих молекул. Коэффициент диффузии не зависит от радиуса пор, но обратно пропорционален давлению. Поскольку в нормальных условиях величина средней длины свободного пробега молекул имеет порядок 10- см, а под давлением 300 ат —порядок 10 см, в порах с радиусом > 10 см будет преобладать молекулярная диффузия. [c.284]

    Если в колонне нет двух жидких фаз, то и представляют собой соответствующие парциальные давления компонентов в газовой фазе. На практике обычно не достигается ЮО п-ная эффективность испарения, поэтому в расчеты вводится поправочный коэффициент, зависящий от характеристи]г аппаратуры и перегоняемой смеси. [c.119]

    Сравнение уравнений (VII, 2) и (VII, 4) показывает, что значение константы скорости реакции в растворе должно отличаться от значения константы скорости реакции в газовой фазе на множитель, содержащий коэффициенты активности, т. е. [c.184]


    Ор — коэффициент диффузии продукта реакции в жидкости, см /сек. Пе — эффективный коэф )ициент осевой диффузии (продольного перемешивания) жидкости на тарелке, см /сек Оа — коэффициент диффузии абсорбируемого компонента в газовой фазе, см /сек. [c.12]

    Ка — коэффициент массопередачи, выраженный через концентрации в газовой фазе, моль см -сек атм) [c.13]

    При диффузии газа в жидкость, с которой он химически взаимодействует, может происходить повышение температуры вблизи поверхности абсорбента, во-первых, из-за экзотермичности физической абсорбции, а во-вторых (в еще большей степени), вследствие экзотермичности химической реакции. При достаточно большом увеличении температуры это может отразиться на скорости абсорбции вследствие воздействия на растворимость, коэффициент диффузии и скорость реакции. В последующих расчетах принимается, что потери тепла с поверхности жидкости в газовую фазу отсутствуют. Разумеется, при наличии таких потерь повышение температуры поверхности будет менее значительным, поэтому полученный результат дает завышенное, по сравнению с действительным, значение температурного роста. [c.61]

    Далее в книге для описания массоотдачи в газовой фазе используется пленочная модель, а для массоотдачи в жидкой фазе — выражения скорости абсорбции Я (или коэффициента ускорения Е), полученные на основе как пленочной, так и модели обновления поверх- [c.148]

    При изменении v от 50 до 350 см/сек значения коэффициента массоотдачи в газовой фазе k( для абсорбции аммиака водой из смеси с  [c.177]

    Значения кд для других газов при тех же условиях могут быт ь вычислены в соответствии с изложенным ниже (см. раздел 1Х-1-1). Кажется наиболее вероятным, что коэффициенты массоотдачи в газовой фазе изменяются пропорционально квадратному корню из коэффициента диффузии абсорбируемого газа, что и следует учитывать при внесении соответствующих поправок в получаемые значения кд. [c.180]

    Эти уравнения можно использовать для оценки значений объемных коэффициентов массоотдачи в газовой фазе и для других газов и других давлений с привлечением к расчету уравнения (IX,1). [c.206]

    IX-1-3. Сопротивление массопередаче в жидкой фазе и межфазная поверхность. Для оценки влияния химической реакции на скорость абсорбции газа необходимо знать величины и ав отдельности. Величина объемного коэффициента kiO. может быть легко измерена путем абсорбции с учетом сопротивления в газовой фазе или при полном устранении сопротивления со стороны газа в таких измерениях. Если независимо от этого определить а, то по величинам к а [c.207]

    Если, например, абсорбционный процесс попадает в режим мгновенной реакции , то метод непригоден, так как коэффициент ускорения не зависит от (см. раздел V-3). Желательно, а может быть и необходимо, подбирать такую комбинацию газа и жидкости, чтобы скорость абсорбции была одной и той же во всех точках колонны и не зависела от количества абсорбированного газа. Кроме того, лучше не иметь дела с системами, в которых имеется заметное сопротивление массопередаче в газовой фазе. [c.211]

    Из уравнений (8.1) и (8.2) можно увидеть, что общая скорость массопередачн есть линейная функция движущей силы в жидкой фазе с — с (как и предполагалось при определении коэффициента абсорбции), только в случае реакции первого порядка. Это создает некоторую трудность, когда заметно сопротивление массопереносу в газовой фазе. [c.91]

    При постоянной величине коэффициента абсорбции и при высоких парциальных давлениях СОг величина 1,25/сг-лол/(ч-л Х Хатм) должна соответствовать либо условиям быстрой реакции, либо сосредоточению сопротивления массопередаче в газовой фазе, если поведение при низких парциальных давлениях соответствует процессу мгновенной реакции. Величина 1,25, действительно, намного ниже рассчитанной при допущении условии быстрой реакции или условий сосредоточения сопротивления массопередаче в газовой фазе и приближенно соответствует величине, которая может быть рассчитана при сосредоточении сопротивления массопередаче в жидкой фазе при условиях медленной реакции. [c.133]

    Если диффундирующее вещество слабо растворимо в жидкой среде, то параметр т должен быть велик, ибо при равновесии весьма малая концентрация в жидкой фазе должна соответствовать большой концентрации в газе. Член 11т к в (11.43) становится пренебрежимо малым, и общий коэффициент массопередачи Кх практически совпадает с коэффициентом массоотдачи ж-В этом случае главное сонротивление диффузии оказывается ншдкостью и поэтому говорят, что ход массопередачи контролируется пограничным слоем на жидкостной стороне межфазовой поверхности. Если же диффундирующее вещество хорошо растворимо в жидкой среде, то параметр т должен быть мал, ибо нри равновесии уже небольпшя концентрация а в газовой фазе соответствует весьма больпкш концентрации его в жидкости. Член т кт в (11.42) становится пренебрежимо малым, и общий коэффициент массопередачи Ку практически совпадает с коэффициентом массоотдачи k . В этом случае главное сопротивление диффузии оказывается уже газом и поэтому говорят, что ход массопередачи контролируется пограничным слоем на газовой стороне межфазовой поверхности. [c.76]


    Как видно из (8.9), функция /(s) полностью определяется относительными фазовыми проницаемостями (см. гл. 1). Типичные графики /(j) и ее производной/ (i) приведены на рис. 8.2. С ростом водонасыщенности f(s) монотонно возрастает от О до 1. Характерная особенность графика/(s)-наличие точки перегиба П с насыщенностью участков вогнутости и выпуклости, где вторая производная/"(j) соответственно больше й меныйе нуля. Эта особенность в большой степени определяет специфику фильтрационных задач вытеснения 6 fiaM-ках модели Бакли-Леверетта (по сравнению, например, с задачами распространения ударных волн в, газовой динамике). Графики функций f (s) и f s) для различных отношений коэффициентов вязкости фаз [c.231]

    Для процессов, протекающих в газовой фазе, коэффициент диффузии равен 0,1—1,0 см 1сек, а для процессов в твердой фазе —от 1 см /год до 1 смЧсек. [c.234]

    Перемешивание в газовой фазе. Было установлено, что для слоя высотой 1—2 м и диаметром от 25 до 75 мм обратное перемешивание в газовой фазе является слабым . Данные Стемердин-га показывают, что интенсивность перемешивания в газе быстро возрастает с увеличением диаметра. Так, коэффициент турбулентной диффузии газа, который является показателем скорости перемешивания, в трубах диаметром 152 мм в 10 раз больше, чем в трубах диаметром 76 мм, и в 20 раз больше, чем в трубах диаметром 25 мм. Имеются сообщения о степени перемешивания в больших промышленных регенераторах установок каталити- [c.294]

    Однако в капилляре скорость газа изменяется от оси капилляра к поверхности его стенок. Для упрощенного учета этого фактора можно принять, что во вр)утренней части капилляра газ протекает с некоторой определенной скоростью, а часть газа, примыкающая к стенкам капилляра, остается неподвижной. При этом возникает диффузия между движущейся газовой фазой и неподвижным слоем газа у стенки (так называемая динамическая диффузия). Это приводит к тому, что молекулы в движущемся газе опережают молекулы, задерживающиеся в неподвижной пленке газа у стенок, что вызывает дополнительное размывание хроматографической полосы. Это размывание уменьшается с увеличением коэффициента молекулярной диффузии, при котором облегчается обмен молекулами между движущейся частью газа и неподвижной его частью у стенок. Существенно, что размывание, обусловленное такой динамической диффузией, зависит от скорости газа. С увеличением скорости газа размываннс нозрастает, так как чем больше скорость потока, тем больше отставание от него молекул, попавших в неподвижный слой газа у стенок капилляра. Рассмотрим приближенно зависимость соответствующего коэффициента динамической диффузии )д от скорости потока газа. [c.587]

    Чтобы при помощи этого уравнения, выведенного Бренстедом и Бьеррумом, оценить изменение значений константы скорости при переходе от газовой фазы к раствору, надо использовать какое-либо выражение для коэффициентов активности. Для оценки взаимодействия между нейтральными частицами можно использовать следуюп1ее уравнение для коэффициента активности, данное Лэнгмюром  [c.184]

    В связи с этим обеспечить взрывобезопасность процесса фиксированием содержания углеводородов вне их пределов взрываемости практически невозможно. Дополнительную сложность в стабилизации содержания горючего на безопасном уровне вносят такие трудно контролируемые факторы, как пропуск в теплообменниках нефть — гудрон на АВТ, неполное отделение легких углеводородов на деасфальтизации, образова--ние лепких углеводородов в процессе окисления и при повышении температуры в нижней части вакуумной колонны (легкий крекинг), что практически обусловливает непредсказуемость состава газовой фазы. Содержание углеводородов в этой фазе может меняться в широких пределах — от 0,12 [263] до 4% (об.) [283]. В соответствии с ГОСТ 12.1.004—76 ( Пожарная безопасность ) нижний концентрационный предел воспламенения снижается с утяжелением углеводородного топлива следующим образом 1% (об.) для бензинов, 0,6% (об.) для керосинов и 0,3—0,4% (об.) для дистиллятных масел с молекуляр- -ной массой 260—300. Молекулярная масса отгона — 250 [262] (260 [2]) — близка к молекулярной массе дистиллятных масел, поэтому нижний концентрационный предел его можно принять в пределах 0,3—0,47о (об.). Для определения безопасной концентрации отгона необходимо (в соответствии с названным стандартом) учесть влияние температуры и коэффициента безопасности. Температурный фактор оценивается lio формуле [c.175]

    Линейная скорость паровой и газовой фаз в транспортных ли-,, ниях реактора и регенератора равна 6,5—7,5 м/сек, концентрация катализатора в транспортных линиях 12—18 кг/л , удельный вес кипящего слоя катализатора в реакторе 410—470 кГ1м , в регенераторе 400—450 к/ /л4 , коэффициент скольжения в транспортной линии 1,6—2,0. [c.179]

    Здесь А — концентрация растворенного газа у поверхности раздела между жидкостью и газом, соответствующая условиям равновесия с парциальным давлением газа в газовой фазе. Пока будем считать, что парциальное давление газа одинаково во всех точках рассматриваемого элемента пространства. Влияние на это парциальное давление других газов, обладающих низкой растворимостью, будет рассмотрено в разделеУ-13. Символом а обозначена поверхность контакта между газом и жидкостью, заключенная в единице объема системы, — коэффициент физической массоотдачи в жидкой фазе. Величина Н представляет собой среднюю скорость переноса газа через единицу поверхности действительная же скорость массопередачи может меняться как от точки к точке, так и со временем. Значение Л соответствует средней концентрации растворенного газа в массе жидкости. [c.99]

    По уравнениям (IX,38), (1Х,39) и (1Х,40) находим fe =2,l см/сек k = = 0,035 см1сек а = 2,91 см (в этом примере символом обозначен коэффициент массоотдачи в газовой фазе, в котором движущая сила выражена в единицах концентрации, в отличие от кд, для которого она выражается в единицах парциального давления). [c.201]

    При нахождении таким делением, кроме того, дополнительно учитывались различия в фактических свободных объемах сухой и орошаемой насадки (рабочий свободный объем в последнем случае меньше на объем, занятый орошающей жидкостью) и неодинаковость коэффициентов диффузии аммиака и нафталина в газовой фазе. Учет первого фактора состоял в том, что соотносимые друг с другом значения кдОе и kg брали пе при одинаковых фиктивных (отнесенных ко всему сечению колонны) скоростях газа, а прн одинаковых отношениях этих скоростей к рабочей [c.215]


Смотреть страницы где упоминается термин Коэффициент в газовой фазе: [c.85]    [c.9]    [c.99]    [c.101]    [c.150]    [c.154]    [c.71]    [c.186]    [c.582]    [c.347]    [c.346]    [c.55]    [c.132]    [c.13]    [c.147]    [c.183]    [c.192]    [c.205]    [c.216]   
Дистилляция (1971) -- [ c.68 , c.140 ]

Справочник инженера - химика том второй (1969) -- [ c.51 ]




ПОИСК





Смотрите так же термины и статьи:

Газовая фаза



© 2025 chem21.info Реклама на сайте