Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Градуировочный график вид функций

    Если градуировочная функция линейна, т. е. Шу = ау- -Ь, то коэффициент чувствительности равен угловому коэффициенту градуировочного графика (рис. 1.3)  [c.14]

    Потенциометрия, прямая потенциометрия, ионометрия — прямое определение концентрации (активности) ионов в растворе при помощи ионоселективного электрода. Метод заключается в непосредственном измерении электродных потенциалов и нахождении концентрации по градуировочному графику или путем вычислений. Электрод, потенциал которого измеряют (индикаторный электрод), вместе с каломельным или хлорсеребряным электродом сравнения погружают в анализируемый раствор. Потенциал индикаторного электрода — функция активности веществ, участвующих в переходе электронов [70—72]. Потенциал Е хлорсеребряного электрода в анализируемом растворе соли серебра при 25°С равен  [c.20]


    Методом построения градуировочного графика определяют следующие основные параметры электрода 1) область прямолинейной концентрационной зависимости потенциала 2) угловой коэффициент наклона прямой = /(рс,) — крутизну электродной функции (5) 3) коэффициенты селективности относительно различных ионов 4) время отклика электрода, т. е. время достижения равновесного или стационарного потенциала. [c.112]

    В методе градуировочной функции проводят ряд опреде.чений при различных, но точно известных содержаниях данного компонента. По полученным результатам либо вычисляют значение коэффициента чувствительности (в случае линейной зависимости 2.4), либо строят градуировочный график (как для линейной, так н нелинейной зависимостей 2.4). При анализе объекта с неизвестным содержанием определяемого компонента измеряют интенсивность сигнала у, а искомое содержание с либо вычисляют по формуле (2.4), либо находят по градуировочному графику (см. рис. 3). [c.24]

    Метод стандартных серий принципиально не отличается от метода получения градуировочного графика, используемого при стандартизации и калибровке электрода с целью установления тех или иных его параметров. Для построения градуировочного графика используют стандартные растворы со все возрастающей концентрацией определяемого иона и постоянным содержанием индифферентного сильного электролита (для поддержания неизменной величины ионной силы раствора) при условии, что не нарушается прямолинейная зависимость э.д. с. от логарифма активности (концентрации) определяемого иона. Метод стандартных серий делает возможным применение электродов, не обладающих теоретическими характеристиками, так как он предусматривает лишь установление их эмпирических величин (например, крутизны электродной функции). [c.115]

    На рис. 6.10 приведены градуировочные графики для стеклянного электрода, полученные при различных температурах. Все прямые на этом рисунке пересекаются в одной так называемой изопотенциальной точке. Если известны температура анализируемого раствора и изопотенциальная точка, то можно ввести соответствующую поправку, что обычно и делают при измерении pH. Однако при работе с ионоселективными электродами изопотенциальная точка, как правило, не известна и находится за пределами градуировочного графика, что увеличивает ошибку, связанную с корректировкой электродной функции. Причиной такой ошибки может быть, например, противоположное смещение потенциалов электрода сравнения и индикаторного электрода. В связи с этим прямые потенциометрические измерения следует проводить при постоянной температуре. [c.221]


    Поскольку сигнал электрода связан с активностью, а не с концентрацией определяемого вещества, то в области высоких концентраций может наблюдаться отклонение градуировочного графика от прямолинейной зависимости. Нелинейность графика обусловлена уменьшением коэффициента активности определяемого иона по мере увеличения концентрации электролита. Добавление избытка инертной соли позволяет поддерживать ионную силу раствора постоянной. В этом случае электродная функция линейна в широком диапазоне концентраций. Используя градуировочный график, концентрацию раствора (С ) устанавливают по измеренной величине э. д. с. или рассчитывают по формуле [c.224]

    F6.2///5X. ПАРАМЕТРЫ ЛИНЕЙНОГО ГРАДУИРОВОЧНОГО ГРАФИКА ИХ МЕТРОЛОГИЧЕСКИЕ ХАРАКТЕРИСТИКИ ////5Х. ПАРАМЕТРЫ ЛИНЕЙНОЙ ФУНКЦИИ РЕГРЕССИИ 7/15Х, В1 =, Е10.5//5Х, СРЕДНИЕ ЗНАЧЕНИЯ X И Y //15X. XSR=.  [c.370]

    Методом двойных стандартных добавок. Если крутизна электродаой функции 5 (тангенс угла наклона градуировочного графика) неаз-. вестна.к анализируемому раствору дважды производят добавку одинаковых порций стандартного раствора,измеряя изменение ЭДС после каждой добавки (ЛЕ иЛЕ ) с,. ДО [c.42]

    Энергии различных видов излучения могут существенно различаться, причем каждый нуклид характеризуется определенной энергией. Нуклид, испускающий а- и р-частицы, можно обнаружить, применяя стандартные поглотители, например листы фольги различных металлов с известной толщиной. Толщина с.аоя фольги, необходимая для снижения активности излучения вдвое, может служить мерой энергии излучения нуклида. З ту величину можно определить по градуировочному графику. Можно также применять описанные выше счетчики, сортирующие импульсы излучения в соответствии с их энергией. Самописцы при этом регистрируют число импульсов в минуту как функцию энергии частиц. Счетчики можно также использовать как спектрометры. Созданы также нейтронные спектрометры, которые позволяют определять ряд элементов по измерению поглощения нейтронов. [c.387]

    Метод градуировки. Целью количественного анализа является определение содержания какого-либо элемента или соединения X. Поэтому необходимо точно знать функциональную зависимость между измеряемой величиной у и содержанием х (рис. Д.194). Желательно, чтобы эта зависимость не была многозначной (а). В случае двузначной зависимости, например для активной составляющей метода осциллометрии, нужно определить, в какой области должно находиться значение у для получения правильных результатов для х (б). Даже однозначная функциональная зависимость не всегда является идеальной (в), так как при наличии кривизны функции существует сильная зависимость чувствительности измерений от содержания компонента. Такая ситуация возникает, напр/ мер, при подавлении максимумов первого рода в постояннотоковой полярографии при определении содержания примесей поверхностно-активных веществ в воде. В таких случаях используют специальные приемы, например измеряют объем пробы, при добавлении которого сигнал уменьшается наполовину. Фиксируют значение у и определяют X при соответствующем разбавлении пробы. Как правило, для аналитических определений необходимо наличие однозначной линейной функциональной зависимости (г). Тогда градуировочный график можно описать уравнением у = ув+Ъх. При х =0, т. е. в отсутствие определяемого компонента, у=ув, поэтому ув называют сигналом фона. Причинами возникновения сигнала фона могут служить примеси определяемых компонентов в реактивах и растворителе, а также наложение сигналов, перекрывающих сигналы определяемых компонентов. Сигнал фона стараются в каждом конкретном случае уменьшить (при- [c.455]

    Для определения концентрации по данным кинетических измерений чаще всего используют метод тангенсов. По методу тангенсов оптическую плотность растворов, содержащих различное количество элемента — катализатора, измеряют через определенные промежутки времени. Затем строят графики в координатах оптическая плотность — время (дифференциальный вариант кинетического метода анализа, рнс. 38) или функция оптической плотности — время (интегральный вариант). По графику определяют тангенсы угла наклона полученных прямых и строят градуировочный график в координатах tg а — концентрация катализатора (рис. 39). Для определения концентрации по данным кинетических измерений используют также способы фиксированного времени, фиксированной концентрации и др. [441. [c.84]

    Между интенсивностью сигнала у и содержанием (концентрацией) определяемого компонента существует однозначная функциональная зависимость. Она может быть выражена в внде соответствующей математической функции, называемой градуировочной функцией, либо в виде соответствующего графика, называемого градуировочным графиком (градуировочной кривой, прямой) (рис. 3). Иногда прибегают к таблицам, где записывают различные значения интенсивности сигнала и соответствующие содержания определяемого компонента. [c.23]


    При работе по методу градуировочной функции с помощью стандартных образцов или стандартных веществ получают ряд образцов (или растворов), содержащих различные, но точно известные количества определяемого компонента. Потом проводят анализ этих образцов (растворов) и по полученным данным либо вычисляют значение чувствительности S (в случае линейной градуировочной функции), либо строят градуировочный график (как для линейной, так и нелинейной функций). Тогда проводят определение в исследуемом объекте и измеряют интенсивность аналитического сигнала у. Количество (массу, содержание) искомого компонента вычисляют по градуировочной функции (1.4) [c.16]

    Другим условием успешного применения метода наименьших квадратов, которое обычно автоматически Выполняется в ходе проведения химико-аналитического эксперимента, является уело- вие лучшей воспроизводимости (меньших случайных погрешностей) при измерении аргументов Xi в сравнении с измерением ординат функции Действительно, при построении оптимальных градуировочных графиков / =/(С) отдельным значениям С,- отвечают стандартные концентраций, определенные с высокой точностью, иными словами, значения аналитического сигнала /, измеряются по существу для закрепленных и постоянных уровней i. Аналогичным образом при исследовании зависимостей констант равновесия или констант скорости реакции от температуры случайные погрешности в измерении температуры существенно ниже разброса значений констант. [c.138]

    Серьезным недостатком метода градуировочного графика является погрешность, обусловленная предположением, что Е" после градуировки электрода остается постоянной. Это предположение редко бывает правильным, поскольку состав анализируемого раствора почти всегда отличается от состава растворов, применяемых для градуировки. Вследствие этого диффузионный потенциал, входящий в °, будет слегка изменяться, если даже применяется солевой мостик. Обычно эта погрешность составляет величину порядка 1 мВ, что приводит к ошибке 4% при прямом потенциометрическом определении концентрации однозарядного иона, + 8% при определении двухзарядных ионов и 12% при определении трехзарядных ионов. Такой точности во многих случаях оказывается достаточно для практических целей. В погрешность прямых потенциометрических измерений существенный вклад вносят также флуктуация значений S во времени и зависимость крутизны наклона электродной функции от концентрации и температуры анализируемого раствора. Говорят, что отклик электрода нернстовский, если наклон зависимости Е - Ig отличается от теоретической величины не более чем на 1-2 мВ. Ниже этой величины зависимость называется суб-нернстовской, выше - гипер-нернстовской. [c.225]

    Вычисление регрессии применяется при построении градуировочного графика по тп парам значений хк Ук- Отрезок на ординате а соответствует неизбежному значению холостого опыта, а коэффициент регрессии Ь представляет чувствительность метода анализа. Далее при анализе измеренное значение У А = Уа/П] вычисляют из параллельных определений. Искомое содержание находят из функции анализа Жу) = — а)/Ь, обратной к градуировочной функции. Стандартное отклонение для концентрации получают из [c.172]

    Из градуировочного графика, полученного с помощью взвешенной регрессии, находим функцию анализа хаш = (уаш - Ош)/Ьш- Стандартное отклонение для [c.175]

    Метод стандартов и метод добавок применимы для линейной градуировочной функции. Метод градуировочного графика допускает использование как линейной, так и нелинейной функций аналитический сигнал-содержание. В последнем случае требуется большее число экспериментальных данных и результат определения содержания компонента бывает, как правило, менее точным. [c.61]

    Во всех методах определения неизвестного содержания компонента используют функциональную зависимость у = = Коэффициент чувствительности 8 (иногда его называют просто чувствительность) характеризует отклик аналитического сигнала на содержание компонента. Коэффициент чувствительности — это значение первой производной градуировочной функции при данном определенном содержании. Для прямолинейных градуировочных графиков — это тангенс угла наклона прямой (см, рис. 2.1)  [c.61]

    Типичные данные для различных количеств агломератной смеси и соответствующие градуировочные графики представлены на рис. 10-4. В интервале значений влажности 0,4—8,0% при нагрузке на конвейер 20—130 кг/м стандартное отклонение от средней линейной регрессии соответствует содержанию влаги 0,4%. Для более узкого интервала значений влажности была получена более высокая точность, при этом в расчетах использовали значение функции /, соответствующее середине рассматриваемого интервала [41 ]. [c.527]

    Анализ сходимости показал, что достаточно двух приближений для получения постоянных значений концентраций. В случае двухкомпонентных систем проще рассчитать несколько значений функции кс — Р(с) по формуле (2) и построить Градуировочный график для всего интервала концентраций. Проверка формул (2) — (7) на экспериментальных данных, полученных при анализе большого числа сплавов различных систем, показала, что они обеспечивают точность расчета 2—10% для систем любой сложности. [c.66]

    Аналогичная система (названная D R-1), разработанная Кит-сом [118], основана на том, что разряд конденсатора является логарифмической функцией времени. Когда система используется с двухлучевым спектрофотометром, постоянное напряжение, пропорциональное интенсивности луча сравнения, первоначально подается на конденсатор большой емкости. Конденсатор во много раз меньшей емкости используется для ступенчатого разряда первого конденсатора. Разряд происходит до тех пор, пока напряжение на конденсаторе не становится равным постоянному напряжению, полученному от светового сигнала в основном канале. Счетная схема обычной конструкции подсчитывает число ступеней разряда конденсатора и выдает в цифровой форме значение оптической плотности. Если градуировочный график линеен относительно оптической плотности, выходной сигнал легко может быть проградуирован [c.47]

    Уравнение (7.28) показывает, что отношение интенсивности рассеянного света к интенсивности падающего пропорционально концентрации взвешенных частиц. Градуировочный график в координатах ///о как функция с будет линеен. [c.159]

    Разработаны методики экспресс-определения ряда катионов редких, драгоценных и тяжелых металлов, хлора, кислорода, неорганических анионов, фенолов, аминов, гидразинов, альдегидов. Построены линейные градуировочные графики зависимости коэффициентов пропускания и диффузного отражения от концентрации микрокомпонентов с прямой пропорцианальной зависимостью или на основе функции Кубелки-Мунка-Гуревича. Погрешность определения с помощью стандартных цветовых шкал компараторов ЭКОТЕСТ 10-50% относительное стандартное отклонение для тестов ФОТОКО-ЛОРИМЕТРА-РЕФЛ ЕКТОМЕТРА 0,1-0,3. [c.106]

    Однако определение концентрации бромид-ионов непосредственно по величине Е затруднено тем, что значение Е зависит от ионной силы раствора и ряда других факторов и не всегда известно, а крутизна электродной функции Ь не соответствует строго теоретическому значению д = 2, НТ1Р. Кроме того, значения Ь и особенно Е со временем могут меняться. Поэтому для определения концентрации бромид-ионов с помощью бромид-селективного электрода последний вначале градуируют по стандартным растворам бромида калия при выбранной постоянной ионной силе раствора, строя градуировочный график в координатах —1д Такой график должен представлять [c.244]

    Жидкостной бро.мид-селективный электрод, наготовленный на основе нитробензольного раствора кристалличесиаго фиолетового (5- Ю М) имеет прямолинейный участок градуировочного графика при относительно больших концентрациях от 10 до 10 моль/л. Описанный ранее электрод с мембраной из раствора бромида ртути в трибутил-фосфате имеет значительно меньшнй предел обнаружения (рВг=4,5), но в области больших концентраций (рВт=4—2,5) наблюдаются отклонения от линейности и Появление катионной функции [1]. Лучшими характеристиками обладает электрод со смесью кристаллического фиолетового (5-10- М) и бромида ртути (нас.) в нитробензоле в качестве мембраны. Линейность градуировочнаго графика сохраняется в пределах рВт от 2 до 5,5, предел обнаружения рВг р =5,7, крутизна электродной функции 45 м В/рС, коэффициент селективности к хлоридам, определенный методам смешанных растворов, равен 0,01. Присутствующие в растворе ионы калия, кальц(ия, бария, М агния, меди, железа, хро.ма не оказывают влияния на электродный потенциал. [c.28]

    Для определения применимости закона Ламберта — Бера в условиях анализа поступают следующим образом при Лщах измеряют оптическую плотность ряда растворов с различной концентрацией определяемого компонента и представляют ее как функцию концентрации (рис. Д. 150). Линейная зависимость указывает, что к данной системе закон Ламберта — Бера применим. Эту диаграмму в дальнейшем можно использовать как градуировочный график для определения неизвестной концентрации частиц. По углу наклона прямой можно определить величину молярного коэффициента погашения. [c.358]

    Если градуировочный график нелинейный, то для его построения целесообразно применять метод наименьших квадратов. Надо отмеппь, что не следует стараться выбирать в качестве аппроксимирующей функции полином неразумно высокого порядка, так как в этом случае ирггериоляция часто теряет физический смысл. Поэтому всегда необходимо применять полиномы наименьших возможных степенен. Более подробно с вопросом о выборе степени аппроксимирующего полинома можно познакомиться в специальной литературе, посвященной мате.матнческим методам обработки экспериме11тальных результатов. [c.92]

    Описанная выше идеальная ситуация, когда максимумы эмиссионной и абсорбционной линий совпадают, а ширина эмиссионной линии много меньше абсорбционной, существует лишь в редких случаях. Различие давлений в источнике света и в поглощающем слое приводит к сдвигу максимума лгаии поглощения относительно эмиссионной линии. Нельзя также не учитывать эффект самопоглощения резонансных линий внутри лампы с полым катодом, который может обусловить заметное дополнительное уширение эмиссионной линии. Кроме того, ддя многих элементов существенно сверхтонкое расщепление резонансных линий. В совокупности эти явления приводят к тому, что прямая пропорциональная зависимость оптической плотности от концентрации атомов в поглощающем слое часто нарушается, что находит проявление в искривлении градуировочных графиков при анализе. Существенное влияние на отклонение фадуировочной функции от линейной также оказывают непоглощенное и рассеянное излучение от источника света (попадающее в полосу пропускания монохроматора), градиенты температуры и концентрации атомов внутри поглощающего слоя, распределение плотности излучения в зондирующем пучке света и др. В итоге выражение ддя измеряемой оптической плотности поглощения в наиболее общей форме может быть представлено в виде [c.826]

    Ионометрически можно определять не только активность, но и концентрацию ионов. Для этого по оси абсцисс градуировочного графика откладывают отрицательный логарифм не активности, а концентрации. Изображение градуировочной функции тогда, конечно, имеет отклонения от прямой. [c.270]

    Наиболее простой способ градуировки - способ внешних стандартов. Его часто назьшают также способом "обычной" градуировки либо способом "градуировочного графика" (правомерность применения последнего термина, однако, вызьшает сомнения, поскольку и при других, специальных, способах градуировки градуировочную функцию также часто представляют в графическом виде). В этом способе берут ряд ОС с содержанием определяемого компопепта С ,. .. с , проводят с ними все необходимые согласно методике аналитические процедуры и измеряют их аналитические сигналы (у , у2,. .. у , соответетвенно). По полученным парам экснеримептальпых значений (С , у ) строят зависимость от с и аппроксимируют ее подходящей алгебраической функцией либо [c.4]

    Основная цель способа добавок - обеспечение максимально точного соответствия условий градуировки и собственно определения (с. 4). При использовапии способа добавок эти две операции совмещаются воедино известные содержания определяемого компонента вводят как добавки неносредственно в анализируемый раствор и представляют градуировочную функцию в виде графика зависимости аналитического сигналаот концентрации добавки Ас (рис. 4). Содержание компонента в анализируемом растворе находят путем экстраполяции полученной зависимости па пулевое (или фоновое, если оно известно - с. 5, 28) значение аналитического сигнала. Легко видеть, что в этом случае даже при наличии мультипликативной погрешности (т.е. изменении тапгепса угла наклона градуировочного графика) получается правильный результат (ср. кривые 1 и 2 рис. 4). В то же время аддитивную систематическую погрешность способ добавок устранить не может (кривая 3 рис. 4). [c.24]

    Если при выбранной длине волны поглощает свет лишь анализируемое соединение и градуировочная функция (градуировочный график) выражается прямой линией, то, согласно приведенной формуле и уравнению основного закона светопоглощения, первая производная градуировочной функции равна е/. Таким образом, при фотометрических определениях при указанных выше условиях произведение е/ (тангенс угла наклона, угловой коэффициент градуировочного графика) является коэффициентом чувствиительности. [c.269]

    Сорбция марганца проводилась по той же методике, что и для никеля. Воздушно-сухой бумажный диск, содержащий сорбированный марганец, обрабатывали каплей ацетонового раствора формальдоксима и в смоченном состоянии вносили в пары аммиака до полного развития окраски (3 мин.). После высушивания измеряли коэффициент отражения и определяли концентрацию марганца аналогично тому, как это проводили для никеля. Зависимость функции /(/ ) от длины волны для формальдоксимата марганца на бумаге представлена на рис. 1, кривая 2. Максимум полосы поглощения лежит в области 450 ммк, поэтому градуировочный график для определения марганца (рис. 2, кривая 2) строили по отражению стандартных образцов при этой длине волны. Чувствительность метода составляла 0,01 мкг Мп в 10 мл. Воспроизводимость была такой же, как и для никеля. В случае марганца окрашенный комплекс нестабилен при длительном хранении, поэтому определения следует проводить сразу же после получения окраски. Железо и медь в количествах, в 100 раз превышающих содержание марганца, мешают определению марганца вследствие наложения полосы поглощения их комплекса с формальдоксимом на полосу поглощения формальдоксимата марганца. [c.355]

    Поскольку ф(1>8) —убывающая функция от О или, что ТО же самое, от М, то совершенно очевидно, что оптическая плотность растет медленнее, чем концентрация. На рис. 10 приведен градуировочный график, построенный в координатах Оспл, Ds [c.47]

    Интересно отметить, что зависимость lg (/еДое) от Се в отличие от 1д (/тДо ) выражается линейной функцией. Экспериментально полученные градуировочные графики достаточно хорошо воспроизводят ход расчетных кривых. При малых концентрациях изотопа для анализа целесообразно использовать источник с изотопом Li , при больших — с [c.342]


Смотреть страницы где упоминается термин Градуировочный график вид функций: [c.369]    [c.121]    [c.10]    [c.44]    [c.398]    [c.21]    [c.278]    [c.357]    [c.283]    [c.140]    [c.9]    [c.64]    [c.194]   
Статистика в аналитической химии (1994) -- [ c.21 ]




ПОИСК





Смотрите так же термины и статьи:

Градуировочный график



© 2025 chem21.info Реклама на сайте