Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение коэффициента массопередачи в процессе абсорбции

    Расчеты аппаратов, в которых процессы массообмена сопровождаются химическими реакциями, носят оценочный характер и могут выполняться различными способами. Наиболее простым и практически удобным является подход, изложенный в [46]. Предполагается, что движущая сила процесса хемосорбции равна движущей силе физической абсорбции, а ускорение процесса массообмена химической реакцией учитывается поправкой к коэффициенту массопередачи в жидкой фазе, определенному по критериальным зависимостям для физической абсорбции. Величины поправок для двух типов химических реакций, называемые коэффициентами ускорения к, представлены на графике рис. 5.45. [c.358]


    Методы расчета технологических параметров абсорбционного процесса, очевидно, должны быть основаны на уравнении массопередачи. При этом специфика процесса отражается в коэффициенте массопередачи, надежное же их определение встречает непреодолимые трудности, особенно при многокомпонентной абсорбции. В связи с этим для инженерной практики в 30-х годах Крейсером — Брауном был разработан метод расчета процесса абсорбции, в основе которого лежат понятия о теоретической тарелке и коэффициентах извлечения компонентов. [c.77]

    ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА МАССОПЕРЕДАЧИ ПРОЦЕССА АБСОРБЦИИ [c.138]

    Цель работы — практическое ознакомление с работой абсорбера и определение коэффициента массопередачи процесса абсорбции, отнесенного к единице поверхности насадки. [c.140]

    Определение коэффициента массопередачи в процессе абсорбции [c.235]

    Определение коэффициента массопередачи в процессе абсорбции................. 4 4 [c.241]

    ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА МАССОПЕРЕДАЧИ В ПРОЦЕССЕ АБСОРБЦИИ [c.172]

    Определение коэффициента массопередачи для процесса абсорбции [c.229]

    Определение коэффициента массопередачи в жидкой фазе. Рассмотрев зонную модель, остановимся теперь на особенностях процесса хемосорбции НаЗ водным раствором МЭА. Эти особенности следующие сравнительно высокая скорость реакции при низком порядке реакции невысокий коэффициент массопередачи в жидкой фазе и, как следствие, незначительная степень превращения МЭА в ходе реакции. Модель такого процесса во многом совпадает с моделью третьй зоны — физической абсорбцией труднорастворимого газа. [c.256]

    Коэффициенты массоотдачи определяют косвенными методами (с. 147). Поэтому возникает вопрос могут ли коэффициенты массоотдачи, найденные в некоторых стандартных условиях (например, при испарении чистой жидкости для Рг или при абсорбции плохо растворимого газа для Рж). служить основой для определения коэффициентов массопередачи в сложном процессе, когда играют роль сопротивления обеих фаз  [c.110]

    Изучается массообмен в наиболее распространенных тарельчатых аппаратах. В литературе [3] рекомендуются формулы для определения коэффициентов массоотдачи и массопередачи для этих аппаратов, нуждающиеся в уточнении. Поэтому исследование массообменных процессов (абсорбции и ректификации) и расчет массообменных аппаратов до настоящего времени проводят с точки зрения статики процесса кинетические особенности процесса учитываются введением эмпирического коэффициента эффективности (коэффициента обогащения или коэффициента полезного действия) тарелки. [c.45]


    Возможность расчета кинетики процесса абсорбции, при котором общее диффузионное сопротивление распределено между обеими фазами, на основании определенных указанным способом фазовых коэффициентов массопередачи с последующим применением уравнения (II.2) показана в работе [165]. [c.60]

    Как было указано выше, изучение массопередачи в жидкой фазе проводили на процессе абсорбции двуокиси углерода водой, который характеризуется тем, что диффузионное сопротивление массообмену полностью сосредоточено в жидкой фазе [166, 240]. Следует отметить, что в литературе отсутствуют данные по абсорбции малорастворимых газов в пленке жидкости, стекающей по внутренней стенке колонны с цилиндрическим ротором. При ректификации диффузионное сопротивление со стороны жидкой фазы хотя и ощутимо, но относительно невелико. Поэтому прямое определение коэффициентов массоотдачи в жидкой фазе в процессе абсорбции становится очень важным. [c.107]

    В действительности, в процессе абсорбции, особенно в статических условиях, и при небольших скоростях жидкости и газа газообразная и жидкостная пленки, очевидно, имеются. Однако такой подход к обоснованию методики расчета абсорбционных аппаратов, по нашему мнению, не способствует изучению процесса абсорбции. Для расчетов по теплопередаче частные коэффициенты или коэффициенты теплоотдачи необходимы, так как между участвующими в теплообмене теплоносителями находится разделяющая их твердая стенка, обладающая определенным термическим сопротивлением, и числовые значения коэффициента теплопередачи зависят от этого термического сопротивления стенки и от теплообмена между теплоносителями и стенкой. В диффузионных процессах обе фазы находятся в непосредственном соприкосновении, и поэтому общий коэффициент массопередачи для каждой пары жидкости и газа зависит исключительно от их свойств и скорости протекания жидкости и газа, и нет никакой необходимости вводить частные коэффициенты. Тем более, что практически опытным путем непосредственно величины этих частных или пленочных коэффициентов определить не представляется возможным. Гораздо проще и надежнее сразу определить опытным путем общий коэффициент массопередачи в зависимости от условий проведения процессов, как коэффициент скорости переноса массы из одной фазы в другую. [c.592]

    Точность определения коэффициента абсорбции при фиксированной поверхности массопередачи зависит от точности определения средней движущей силы абсорбции Дер и количества поглощенных водяных паров. Количество поглощенных паров определялось по изменению концентрации абсорбента (изменению показателя преломления) с помощью интерферометра ИТР-2. Более точное определение Аср решено непосредственным измерением движущей силы (в мм рт. ст.) в начале процесса абсорбции. [c.26]

    Проведено экспериментальное определение общих и частных коэффициентов массопередачи в процессах абсорбции ЫНз и СО2 водой и адиабатической ректификации следующих смесей дихлорэтан—толуол, метанол—этанол и ацетон—толуол. Концентрация легколетучего компонента в смеси менялась в пределах 0,1— 0,9 мол. долей. Аппараты с фиксированной поверхностью контакта имели следующие размеры стеклянных трубок 0 5,6 мм, /= = 1000 мм 0 25,2 мм, /=1000 мм., /=500 мм, 1 = 200 мм 0 49 мм, 1= 1000 мм. [c.27]

    Основные принципы и методы расчета аппаратуры, предназначенной для проведения процессов разделения, представлены для равновесных ступеней и аппаратов, в которых осуществляется непрерывное изменение концентраций. Важнейщие понятия проиллюстрированы на примере процесса абсорбции газа в тарельчатых колоннах и насадочных башнях. Рассмотрение ограничено бинарными системами при постоянной их температуре и давлении. Кратко изложены начала расчета многокомпонентной абсорбции углеводородов и методы учета неизотермических эффектов. Освещены также общие вопросы, касающиеся применения теории к процессам дистилляции, экстракции и отгонки легких фракций. Описаны ускоренные методы предварительного расчета тарельчатых и насадочных абсорберов и процессов в концентрированных газах. Развита приближенная теория многокомпонентной массопередачи при абсорбции. Приведена общая расчетная схема для строгого описания работы изотермических абсорберов. Интерпретированы известные определения эффективности тарелок и коэффициентов массопередачи. Авторы надеются, что данное в этой главе обсуждение в совокупности с фундаментальными понятиями, введенными в других главах книги, поможет читателю анализировать или рассчитывать более сложные абсорбционные процессы и иные операции. Подробное изложение общей теории расчета процессов и аппаратов химической технологии выходит далеко за рамки настоящей книги. Поэтому в главу включена довольно полная библиография по рассматриваемой проблеме. Предполагается, что заранее известны рабочие характеристики оборудования, методы экспериментального определения и расчета которых освещены в главе П. [c.426]


    Часто такой же массообмен осуществляется в других аппаратах, главным образом в колонных, в процессах абсорбции, ректификации п экстракции. В настоящее время для колонных аппаратов выполнено очень большое количество экспериментальных исследований, целью которых было определение коэффициентов массоотдачи и массопередачи, а также получение корреляционных уравнений для вычисления этих коэффициентов. К сожалению, полученные уравнения нельзя использовать для аппаратов с мешалками, так как они действуют иначе, чем полочные аппараты. На полке колонны перемешивание жидкости происходит благодаря кинетической энергии движущегося потока, например газа, в то время как в аппарате с мешалкой перемешивание обусловлено подводом механической энергии извне с помощью мешалки. Диспергирование одной из фаз в аппарате с мешалкой также протекает иначе. В колонне это обычно происходит на соответствующим образом перфорированной перегородке (полке), тогда как в аппарате с мешалкой — в основном благодаря работе мешалки. Дополнительную трудность представляет определение скорости фаз в аппарате с мешалкой. Поле скорости жидкости здесь очень сложное, и единственной величиной для сравнения в этом случае может служить окружная скорость конца лопаток (лопастей) мешалки. Дополнительную трудность в обобщении экспериментального материала для аппарата с мешалкой вызывает также большое количество конструктивных вариантов этих аппаратов. [c.308]

    Уравнение (23) позволяет записать зависимость для определения минимального значения коэффициента массопередачи (Д7а) п , обеспечивающего достижение конструкцией и режимом работы вновь создаваемого непрерывно действующего аппарата заданной стационарной концентрации биомассы микроорганизмов в условиях абсорбции кислорода, не лимитирующей процесс  [c.149]

    Дополнительная сложность расчета процессов абсорбции по кинетическому методу — необходимость определения коэффициентов массопередачи. Именно поэтому они не получили пока распространения в расчетной практике. Только в последние годы с внедрением быстродействующих ЭВМ работы в этом направлении рас-щирились с тем, чтобы исключить необходимость перехода от теоретических тарелок к реальным и сразу получать число необходимых реальных тарелок. Цель расчета процесса абсорбции — определение удельного расхода абсорбента, степени извлечения компонентов и числа действительных тарелок. Для более точного расчета размеров аппарата желательно знать величину жидкостных и паровых потоков по высоте абсорбера. [c.307]

    К. В. Нейперт [4] и К. Шабалин [6] изучали процесс абсорбции газа каплей жидкости на системах аммиак—вода, углекислота-вода и серная кислота—окислы азота. Главная цель этих работ — определение коэффициентов массопередачи в зависимости от относительной скорости падения капель в восходящем газовом потоке. [c.68]

    Результаты расчетов коэффициентов массопередачи на основе каждой из этих теорий имеют близкие значения. В связи с этим для описания хода процесса абсорбции с одновременной химической реакцией обычно используется теория пограничных пленок, дающая возможность более простого математического решения. Однако для анализа явления все чаще применяется пенетрацион-ная модель. Большим достоинством такого подхода к процессу переноса массы, осложненного одновременным протеканием химической реакции, является возможность определения величины поверхности контакта фаз на основе результатов исследований хода абсорбции. [c.251]

    В большинстве случаев теоретическое определение коэффициентов массоотдачи проводят, рассматривая процесс массопереноса для каждой фазы в отдельности вне частицы (внешняя задача) или внутри частицы (внутренняя задача). Фактически это означает, что при решении задачи не учитывается влияние массопереноса в одной фазе на скорость массопереноса в др)той. Очень часто такая постановка вполне допустима. Во многих практических задачах перенос массы в одной из фаз либо вовсе отсутствует (растворение твердой частицы или пузырька однокомпонентного газа (пара) в жидкости, испарение капли однокомпонентной жидкости в газовом потоке и т. п.), либо скорость его значительно выше, чем во второй фазе. В последнем случае говорят, что процесс массопередачи лимитируется сопротивлением второй фазы. Так, при абсорбции хорошо растворимых газов и паров (NH3, НС1, HF, SO2, SO3, этанол, ацетон и др.) из газовой смеси водой в барботажных аппаратах скорость массопередачи лимитируется скоростью диффузии этих газов в пузырьках. Наоборот, процесс массопередачи при водной абсорбции плохо растворимых газов (О2, СО2, NO, N2O) лимитируется сопротивлением водной фазы. В обоих указанных случаях концентрацию переносимого компонента на межфазной поверхности со стороны г-й фазы можно считать известной и равной концентрации, находящейся в равновесии с постоянной концентрацией компонента во второй фазе. Таким образом, для решения уравнения (5.3.1.1) можно использовать граничное условие 1-го рода (см. подраздел 5.2.2). Это существенно упрощает решение задачи. В экспериментах определяют обычно не коэффициенты массоотдачи , (см. уравнение (5.2.4.1)), а коэффициенты массопередачи К(, определяемые уравнениями (S.2.6.2.). Однако проводить эксперимент стараются таким образом, чтобы массоперенос во второй фазе либо отсутствовал, либо протекал значительно быстрее, чем в первой фазе. Тогда коэффициент массоотдачи в первой фазе будет равен экспериментально определенному коэффициенту массопере- [c.274]

    При постановке такого исследования неизбежно должны быть затронуты и некоторые более общие вопросы теории и практики массообменных процессов, а также вопросы методологии исслелТ,о-ваний в этой области. К числу таких вопросов относятся разработка и практическое осуществление методов определения фазовых коэффициентов массопередачи при ректификации и абсорбции, а также соотношение кинетических закономерностей, свойственных обоим процессам. [c.57]

    Рассматривая изменение показателей массопередачи в аппарате ВН с увеличением линейной скорости газа, можно несколько иначе подойти к определению режимов работы слоя насадки. Стационарное состояние и начальное взвешивание насадки могут-быть объединены в один режим, характеризующийся падением степени абсорбции. Коитакт газа с жидкостью в этом режиме происходит по смоченной поверхности элементов насадки. В следующем режиме, совпадающем в основном с гидродинамическим режимом развитого взвешивания насадки, степень абсорбции возрастает. Нижняя граница второго режима по данным экспериментов соответствует значению линейной скорости газа = 1>2—1,4 Шр.в.ор.н- Для третьего режима, наступающего при далвнейщек увеличении линейной скорости газа, характерно интенсивное накопление жидкости в слое, увеличение порозности, образование газовых пузырей. Э4)фективность абсорбции в третьем режиме с увеличением гог падает. Оптимальным для осуществления процессов массопередачи является второй режим. Для расчета коэффициента абсорбции в этом режиМе получено выражение [c.165]


Смотреть страницы где упоминается термин Определение коэффициента массопередачи в процессе абсорбции: [c.128]    [c.149]    [c.90]    [c.165]   
Смотреть главы в:

Руководство к практическим занятиям в лаборатории процессов и аппаратов химической технологии -> Определение коэффициента массопередачи в процессе абсорбции

Руководство к практическим занятиям в лаборатории процессов и аппаратов химической технологии Издание 4 -> Определение коэффициента массопередачи в процессе абсорбции

Руководство к практическим занятиям в лаборатории процессов и аппаратов химической технологии -> Определение коэффициента массопередачи в процессе абсорбции




ПОИСК





Смотрите так же термины и статьи:

Абсорбция массопередачи коэффициент

Коэффициент массопередачи

Коэффициент определение

Коэффициент определение по коэффициентам

Массопередача

Массопередача массопередачи

Процессы абсорбцией

определение коэффициенто



© 2025 chem21.info Реклама на сайте