Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коллоиды осмотическое давление

    Еще более разительный контраст в величине осмотического давления мы увидим, если подсчитаем на основе молекулярно-кинетической теории, чему должно быть равно осмотическое давление таких коллоидов, как, например, золь сернистого мышьяка. Если принять диаметр частиц равным 200 А, то для 1%)-ного раствора ири комнатной температуре расчет приводит в этом случае к величине я = 0,035 см вод. ст., т. е, 0,026 мм рт. ст. Столь незначительные эффекты чрезвычайно трудно измеримы на опыте, тем более что влияние даже весьма незначительных примесей истинно растворенных веществ может перекрыть этот эффект. [c.511]


    Гидрофобные коллоиды, частицы которых по своим размерам намного больше обычных молекул, очень неустойчивы. Поэтому максимально достижимая концентрация частиц в таких коллоидах сравнительно невелика. Например, в золях золота значение с не может быть выше чем 10 частиц в 1 см раствора, что при комнатной температуре кТ эрг), согласно уравнению (3.6), соответствует Р = 40 дин/см , или 4-10 атм. Столь малое осмотическое давление нельзя измерить ни непосредственно в осмотической ячейке, ни косвенно эбулиоскопическим или криоскопиче-ским методом. Последние два метода в данном случае неприменимы еще и потому, что кипячение или замораживание неустойчивых коллоидов приводит к их коагуляции. Таким образом, размер частиц гидрофобных коллоидов невозможно определить путем измерения осмотического давления. Зато этот метод широко применяется для определения молекулярной массы высокомолекулярных соединений (т. е. лиофильных систем), что обусловлено меньшим размером их молекул и большей устойчивостью их растворов по сравнению с гидрофобными коллоидами. Устойчивость раство- [c.43]

    Мембранное равновесие Доннана. Более детальное изучение осмотического давления коллоидных растворов показало, что даже применение в качестве внешней жидкости ультрафильтрата этого же золя не дает результатов, которые бы точно соответствовали теоретическим. В некоторых случаях экспериментально определенное осмотическое давление того или иного золя было больше теоретического, оно не зависело в ряде случаев от концентрации коллоида нли изменялось не пропорционально концентрации его и т. п. Как показали более углубленные исследования, проведенные в свое время Доннаном, причина подобных отклонений кроется в особом равновесии электролитов, которое устанавливается в присутствии частиц (или ионов), не способных проникать через полупроницаемую мембрану. [c.305]

    Все ферменты представляют собой белковые комплексы. Они обладают свойствами гидрофильных коллоидов, с высокой поверхностной энергией, поэтому они чувствительны к действию различных факторов внешней среды. Активность ферментов снижается при резких изменениях температуры и pH среды, повышении осмотического давления, избыточной концентрации субстрата, накапливании продуктов обмена, действии бактерицидных лучей, повышении концентрации самих ферментов и т. д. Наибольшую активность оии проявляют при 25—35° С. Большинство ферментов разрушается при 55—60° С. [c.257]


    Если два раствора электролита разделены мембраной, непроницаемой хотя бы для одного из ионов (обычно это ион коллоида), то все остальные ионы распределяются по обе стороны мембраны неравномерно. Это сказывается на величине измеряемого осмотического давления коллоидного раствора, а также проявляется в обнаружении разности потенциалов между коллоидным раствором и равновесной с ней жидкостью. Данное явление было открыто в 1911 г. Доннаном и получило название мембранного равновесия или равновесия Доннана. Очень близко связаны с этим явлением так называемые суспензионный и золь-концентрационный эффекты. [c.305]

    Все перечисленные особенности коллоидных растворов являются препятствием для применения к ним и таких методов, как криоскопия и эбулиоскопия. В отличие от лиофобных золей растворы высокомолекулярных веществ (т. е. лиофильные коллоиды) уже при сравнительно небольших концентрациях показывают измеримые величины осмотического давления. Это привело к разработке ряда методов определения молекулярной массы для веществ с М от 10 тыс. до 200—300 тыс, а в особых случаях до 1 млн., включая такие важные вещества, как белки, каучуки, полисахариды и т. д. [c.374]

    Гидрофобные коллоиды в состоянии образовывать золи лишь низкой весовой и частичной концентрации. Этим и объясняется низкая вязкость таких систем (вязкость золей гидрофобных коллоидов близка вязкости дисперсионной среды). Осмотическое давление [c.270]

    Гидрофильные (вообще лиофильные) золи могут быть получены значительно более высокой концентрации, чем то доступно для лиофобных коллоидов. Поэтому вязкость их может быть большой. Осмотическое давление, понижение точки замерзания выражаются величинами, доступными для измерения этого нельзя отметить для большинства золей гидрофобных коллоидов. После выделения в осадок дисперсной фазы (например, осторожным выпариванием золя) часто удается получать прежний золь путем простой обработки осадка растворителем. В связи с этим гидрофильные коллоиды часто обозначают как обратимые. [c.275]

    Осмотическое давление золей неорганических коллоидов, понижение давления пара раствора, понижение точки замерзания и повышение точки кипения выражаются очень малыми величинами, вследствие обычно весьма малой частичной концентрации этих систем. [c.128]

    Осмотическое давление золей неорганических коллоидов, понижение давления пара раствора, понижение точки замерзания [c.146]

    Некоторые растворенные вещества практически не диффундируют или диффундируют весьма медленно по сравнению с другими (см. гл. I). Это служило одним из отличительных признаков коллоидных раствор(ЭВ. В дальнейшем отличительным признаком коллоидных растворов стали считать также то, что они не обнаруживают вовсе или обнаруживают ничтожно малое осмотическое давление. Понадобилось очень много времени и труда для того, чтобы установить, что эти различия между коллоидами и истинными растворами не являются качественными, а носят только количественный характер. Нет качественной разницы между молекулярно-кинетическими свойствами истинных растворов и коллоидных систем. Молекулярно-кинетические представления об истинных растворах применимы и к коллоидным системам. [c.19]

    Небольшое добавление нейтральных электролитов к водным растворам высокомолекулярных соединений иногда вызывает Помутнение растворов, изменение вязкости и осмотического давления. Иными словами, возникают явления, внешне сходные со скрытой коагуляцией типичных коллоидов. Эти явления часто вызываются химическим взаимодействием между отдельными группами полимера и ионами добавленного электролита. Кроме того, электролит способствует ассоциации и структурированию в растворах высокомолекулярных соединений. [c.208]

    Осмотическое давление в растворах высокомолекулярных соединений. Осмотическое давление в растворах собственно коллоидов и полимеров, как и в истинных растворах, пропорционально их концентрации [c.192]

    Как показал Михаэлис, степень диссоциации ионогенных групп гидрофильных коллоидов (амфолитов) минимальна в изоэлектрической точке, т. е. число частиц (ионы + молекулы) наименьшее при этом значении pH. Следовательно, осмотическое давление коллоидов оказывается самым низким в изоэлектрической точке и увеличивается при смещении pH в обе стороны от нее. [c.193]

    Растворы же высокомолекулярных веществ — белков, каучука, полисахаридов — при концентрации 10—12% обладают измеримым осмотическим давлением. При помощи специально сконструированных осмометров, позволяющих получать достаточно точные результаты, для коллоидов сыворотки крови было определено осмотическое давление, в среднем равное 25 мм рт. ст. [c.147]

    Как показал Михаэлис, степень диссоциации ионогенных групп гидрофильных коллоидов (амфолитов) минимальна в изоэлектрической точке, т. е. число частиц (ионы+молекулы) наименьшее прн атом аначении pH. Следовательно, осмотическое давление [c.223]


    Казалось бы, из работ Грэма и его современников, не обнаруживших заметной диффузии и осмотического давления в коллоидных растворах и считавших это отсутствие одним из отличительных признаков коллоидов, следует отрицательный ответ на этот вопрос. Однако последующие данные привели, несомненно, к положительному ответу. Более того, оказалось возможным движение коллоидных частиц, в отличие от молекул, наблюдать непосредственно. Удалось вывести основные законы, общие для молекул и коллоидных частиц. Экспериментальное их подтверждение явилось на рубеже XIX—XX вв. триумфом молекулярно-кинетической теории, завоевавшей всеобщее признание. Эти экспериментальные факты в значительной степени связаны с броуновским движением, долгое время остававшимся загадкой. [c.26]

    Растворы лиофобных коллоидов характеризуются непостоянным размером частиц. При увеличении концентрации, например, возможно увеличение размеров этих частиц благодаря процессу агрегации (слипания), а при уменьшении концентрации-процессу дезагрегации (разукрупнения). Эти процессы приводят к тому, что с изменением концентрации осмотическое давление изменяется не прямо пропорционально последней, как [c.304]

    Почему практически нельзя измерить осмотическое давление большинства лиофобных коллоидов  [c.323]

    Благодаря низкой степени дисперсности в суспензиях слабо проявляется или отсутствует такое молекулярно-кинетическое свойство, как броуновское движение, а значит, и диффузия. Осмотическое давление, весьма слабо выраженное в лиофобных коллоидах, в суспензиях практически не обнаруживается, так как частичная концентрация в них еще меньше, чем в лиофобных коллоидах. Вязкость разбавленных суспензий мало отличается от вязкости дисперсионной среды. Высококонцентрированные суспензии (пасты) имеют свойства структурированных систем и характеризуются высокой вязкостью. [c.342]

    Ультрафильтрация - мембранный процесс разделения растворов, осмотическое давление которых мало. Этот метод используется при отделении сравнительно высокомолекулярных веществ, взвешенных частиц, коллоидов. Ультрафильтрация по сравнению с обратным осмосом - более высокопроизводительный процесс, так как высокая проницаемость мембран достигается при давлении 0,2-1 МПа. [c.93]

    Несмотря на то что в плазме крови содержится от 6 до 8% белков, коллоидо-осмотическое давление составляет примерно [c.227]

    Безбелковая часть плазмы в результате гидростатического давления проникает в межклеточное пространство ткани, а в венозной части капилляров происходит обратный ток жидкости в сторону пониженного гидростатического давления по сравнению с коллоидо-осмотическим давлением крови. Аналогичные процессы имеют место и в почках при образовании мочи. При нарушении осмотического равновесия и изменении гидростатического и коллоидо-осмотического давления могут возникнуть различные формы патологии. [c.228]

Рис. 103. Передвижение жидкости между плазмой и межклеточным пространством в зависимости от гидростатического и коллоидо-осмотического давления (Старлинг) Рис. 103. <a href="/info/73976">Передвижение жидкости</a> между плазмой и <a href="/info/1279411">межклеточным пространством</a> в зависимости от гидростатического и коллоидо-осмотического давления (Старлинг)
    Осмотическое давление. Осмотическое давление коллоидных растворов прямо пропорционально числу частиц коллоида в единице объема. Однако, так как по величине и массе коллоидные частицы в огромное число раз превосходят обычные молекулы, то естественно, что число молекул растворенного всщества, например в 17о-ном молекулярно-дисперсном растворе, в соответствующее число раз превосходит число частиц коллоида, находящихся в таком же объеме 1%-ного коллоидного раствора. Вследствие этого осмотическое давление коллоидных растворов много меныие, чем осмотическое давление истинных растворов. Так, осмотическое давление 1%-ного раствора сахара (молекулярный вес сахара М=342 прн комнатной температуре равно 0,725 атм, т. е. 743 см вод. ст., а желатина, частичный вес которой равен примерно 20 000, т. е. раз в 60 больше, чем у сахара, обладает в 1%-ном растворе осмотическим давлением всего в 10 см вод. ст. [c.511]

    До сих пор мы предполагали, что коллоид не является электролитом, а это действительно верно для растворов макромолекул в неполярных растворителях. Однако в водных растворах многие макромолекулы, и прежде всего различные биоколлоиды, как правило, находятся в виде ионов. Если же раствор, кроме того, содержит обычные электролиты, то картина еще более усложняется. Здесь осмотическое равновесие сочетается с электростатическими взаимодействиями. Макроионы, которые не проходят через поры мембраны, частично удерживают около себя противоионы и нарушают их равномерное распределение возникает так называемый мембранный потенциал (играющий важную роль в процессах обмена живой клетки). Электростатически обусловленная повышенная концентрация ионов с одной стороны мембраны является причиной более высокого осмотического давления. Добавка электролита экранирует мембранный потенциал (эффект сжатия противоионной атмосферы), а тепловое движение понижает неравномерное распределение ионов, и осмотическое давление понижается. Предельный случай полностью подавленного мембранного потенциала (равномерное распределение всех ионов около мембраны) соответствует осмотическому давлению раствора неэлектролита той же концентрации. Теорию этого эффекта предложил Доннан (1911г.). Допустим, что слева от мембраны находится раствор полиэлектролита N31 с концентрацией с , а справа — раствор обычного электролита, например ЫаС1, с концентрацией с . Мембрана свободно пропускает молекулы растворителя (воды), ионы Ыа+ и С1 , но не пропускает ионы Для простоты вслед за Доннаном примем, что объемы растворов, находящихся с обеих сторон мембраны, одинаковы. Это делает вывод наглядным, не лишая его общности. Предположим также, что оба электролита полностью диссоциированы. Когда в системе установится равновесие, в ту часть раствора, где находится ЫаК, перейдет х молей ЫаС1, так что концентрация N3+ в нем повысится до - + х, концентрация К останется, как и прежде, равной с , а концентрация С1 , которая вначале была равна нулю, составит х. По другую сторону мембраны концентра- [c.45]

    Осмотическое давление. Для коллоидиых растворов, как и для истинных, характерно осмотическое давление. Оно, подобно газовому давлению, является коллигативным свойством растворов, т. е. зависящим только от числа свободно движущихся коллоидных частиц. [c.303]

    Дониановское равновесие имеет очень большое значение для понимания и теоретического обоснования целого ряда явлений осмотического давления лиофобных коллоидов и растворов высокомолекулярных соединений, отрицательной адсорбции ионов, явлений набухания, а также различных физиологических процессов. [c.306]

    Эта важная особенность высокомолекулярных соединений объясняется весьма большой способностью молекул взаимодействовать с дисперсионной средой, что, собственно, и явилось причиной для употребления термина лиофильность. Именно с лнофильностью связаны и свойства большой сольватируемости и растворимости высокомолекулярных соединений по сравнению, например, с рассмотренными ранее гидрофобными коллоидами. Эта особенность и обусловливает довольно редкие различия между лиофобными золями и растворами ВМС. Если лиофобные золи могут существовать без видимых изменений только в очень незначител15ных концентрациях и поэтому обладают вязкостью, мало отличной от вязкости чистой дисперсионной среды, и проявляют свои диффузионные и осмотические свойства в ничтожной степени, то растворы высокомолекулярных соединений могут длительно существовать в достаточно ощутимых молярных концентрациях, следовательно, обладают заметным осмотическим давлением и повышенной вязкостью. [c.329]

    Если С1ССП, то = и если С, >С11, то Р = последовательно, истинное значение осмотического давления коллоида получается только в том случае, когда концентрация его много больше концентрации присутствующего электролита. [c.307]

    Практически измерение осмотического давления используют для определения величины частиц высокомолекулярных соединений, которые в отличие от типичных коллоидов являются сравнительно концентрированными, кроме того, устойчивость растворов ВМС не требует присутствия электролитов. Удается получать сравнительно концентрированные коллоидные растворы Ге (ОН)з, УаОй, А120а, 810.2, частицы которых имеют форму нитей. Их агрегаты образуют рыхлые губчатые структуры и связывают большой объем жидкости. Поэтому для расчета их осмотического давления формула (XIII.3.1) должна быть скорректирована  [c.405]

    Сходство растворов ВМС с коллоидными растворами обусловлено гигантскими размерами макромолекул, масса кюторых соизмерима с массой мицелл коллоидов. Те свойства растворов, которые определяются размерами частиц, близки у этих систем. Как и коллоидные растворы, растворы ВМС отличаются медленной диффузией, низким осмотическим давлением л, соизмеримой с коллоидными растворами интенсивностью броуновского движения. Макромолекулы в растворе не способны проходить через полупроницаемые мембраны, задерживаются ультрафильтрами. По оптическим свойствам растворы высокомолекулярных соединений также близки к коллоидным. Они обладают повышенной мутностью, в них наблюдается, хотя и менее четко, эффект Тиндаля. Меньшая интенсивность дифракционного рассеивания света в растворах ВМС обусловлена близостью показателей преломления дисперсионной среды (растворителя) и дисперсной фазы (растворенного полимера). [c.436]

    Поэтому осмотическое давление и связанные с ним понижение точки замерзания и повышение точки кипения очень малы в коллоидных системах. Измерение осмотического давления и других связанных с ним величин в коллоидном растворе позволяет судить о размере коллоидных частиц. Однако надо иметь Б виду, что осмометрия коллоидов связана с большими экспериментальными трудностями во-первых, вследствие того, что все эти величины чрезвычайно малы, и во-вторых, потому, что даже ничтожные примеси — следы электролитов или молекулярнорастворимых веществ — искажают все эффекты. Получить же устойчивый коллоидный раствор без таких примесей обычно бывает очень трудно. [c.21]

    Однако в связи с малой весовой концентрацией (менее 1,0% и большим молекулярным весом частиц коллоидов их количество в растворе настолько, мало, что осмотическое давлегие в растворах коллоидов очень низкое. Осмотическое давление в растворах белков и других высокомолекулярных соединений,концентрация которых достигает 10—12% и более, значительнее и оказывает существенное влияние на ряд процессов в организме. Часть осмотического давления крови, обусловленная высокомолекулярными соединениями, в основном белками, называется онкотическим давлением. Оно невелико, составляя в норме всего около 0,04 атм, и тем не менее играет определенную роль в биологических процессах. Общее осмотическое давление крови достигает 7,7 атм. Осмо- [c.192]

    Осмотическое давление в растворах собственно коллоидов и полимеров, как и в истинных растворах, пропорционально их концентрации. Однако в связи с малой весовой концентрацией (менее 1,0%) коллоидов количество частиц в растворе настолько мало, что осмотической давление в растворах собственно коллоидов очень низкое. Осмотическое давление в растворах белков и других рысокомолекулярных соединений, концентрация которых достигает 10—12% и более, значительнее и оказывает существенное влияние иа ряд процессов в организме. Часть осмотического давления крови, обусловленная высокомолекулярными соединениями, в основном белками, называется онкотическим давлением. Оно невелико. составляя в норме всего около 0,04 агм, и тем не менее играет определенную роль в биологических процессах. Общее осмотическое давление крови достигает 7,7—8,1 атм. Осмотическое давление в растворах высокомолекулярных веществ в значительной степени зависит от температуры и pH. [c.223]

    Осмотическое давление коллоидных растворов значительно ниже, чем в истинных растворах той же концентрации. Объясняется это тем, что коллоидные частицы как по велйчине, так и по массе во много раз больше обычных молекул. Вследствие этого и количество их в коллоидном растворе во столько же раз меньше, чем в молекулярном растворе, а осмотическое давление коллоидов пропорциокально числу частиц в единице объема. [c.22]

    Физические свойства раствора обнаруживают подобное же влияние pH. На рис. 10 представлена найденная Лебом зависимость от pH вязкости растворов желатины одной и той же весовой концентрации. Кривая вязкости обнаруживает ясный минимум в изоэлектрической точке и растет при смешении коллоида с кислотой или основанием. Является ли причиной увеличения вязкости только возрастающая сольватация или же оказывает также влияние тормозящее действие противоионов, внешних по отношению к самим частицам желатины,— не совсем ясно. Рис. 11 и 12, также взятые у Леба, иллюстрируют соответствующее влияние pH на осмотическое давление (см. стр. 228) и электропроводность. На величину последней, очевидно, несколько влияет и подвижность ионов неорганического электролита, наличие которых необходимо, чтобы изменять pH. [c.223]


Смотреть страницы где упоминается термин Коллоиды осмотическое давление: [c.217]    [c.123]    [c.292]    [c.332]    [c.18]    [c.125]    [c.184]   
Краткий курс физической химии Изд5 (1978) -- [ c.503 , c.504 ]




ПОИСК





Смотрите так же термины и статьи:

Коллоидные системы, Коллоиды осмотическое давление

Коллоиды

Коллоиды осмотическое давление раствора

Коллоиды осмотическое давление растворо

Осмотическое давление

Осмотическое давление и ультрафильтрация коллоидов при образовании лимфы

Осмотическое давление лиофобных коллоидов

Осмотическое давление растворов ВМВ (молекулярных коллоидов) Мембранное равновесие Доннана

Фаг осмотический шок



© 2025 chem21.info Реклама на сайте