Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Давление единица измерения осмотическое

    Однако, так как возможно, что растущая цепь на любой стадии может скорее оборваться, чем присоединить следующую мономерную единицу, то уравнения (15) дают лишь средние значения. В любой реально идущей реакции полимеризации образуются полимеры различного молекулярного веса. Ожидаемая форма функции распределения по молекулярным весам люжет быть вычислена как для диспропорционирования, так и для соединения опыты по разделению полимеров но молекулярным весам дают хорошее совпадение с ожидаемыми результатами. Имеются методы определения молекулярных весов полимеров, включающие измерение таких общих свойств, как осмотическое давление, рассеяние света (мутность) и вязкость растворов. Поскольку осмотическое давление полидисперсной системы (системы с распределением по молекулярным весам) дает обычный или численно средний молекулярный вес, а рассеяние света — средний вес, определяемые соответственно как [c.123]


    Давление пара растворителя над раствором ниже, чем над чистым растворителем. Вследствие этого растворитель переходит в раствор, увеличивая его объем и заставляя жидкость в трубке подниматься подъем продолжается до тех пор, пока гидростатическое давление р не уравновесит тенденцию растворителя к проникновению в раствор. Давление р называют осмотическим давлением для разбавленных растворов оно пропорционально числу молекул растворенного вещества, приходящемуся на единицу объема. Этот эффект весьма значителен так, осмотическое давление 0,35%-ного (0,010 М) раствора сахарозы в воде при 20 °С составляет 0,27 ат. Расчет, основанный на этих данных, показывает, что р 0,35%-ного раствора водорастворимого полимера молекулярной массы 70 000 составляет 0,013 ат, или 7,0 см водяного столба, что, естественно, легко поддается измерению. [c.528]

    В разбавленных растворах, приближающихся по свойствам к идеальным, коэффициент активности достигает единицы. Коэффициенты активности экспериментально определяются по измерениям осмотического давления, понижения температуры замерзания, упругости пара, электродвижущей силы и др. [c.247]

    Здесь ( — число молекул с молекулярным весом Л1 на 1 г сухого полимера. Этот тип среднего молекулярного веса получается при измерениях осмотического давления растворов, содержащих полимер, так как давление зависит от числа молекул растворенного вещества в единице объема. [c.610]

    Степень электролитической диссоциации а , определяющая долю ионизированных молекул в данном растворе, должна быть при заданных условиях одной и той же (независимо от метода ее измерения), причем в согласии с ее физическим смыслом она не может быть больше единицы и меньше нуля. Насколько хорошо это согласуется с опытом, видно из табл. 2, где для ряда электролитов дано сопоставление величин а , найденных при помощи измерения осмотического давления и электропроводности. [c.29]

    Причины расхождения между величинами молекулярного веса, полученными при измерении осмотического давления и понижения точки замерзания, которые в свое время поставили ученых в тупик, в настоящее время стали понятными. Объяснение в действительности очень простое. Все дело не в методах как таковых, а в различных концентрациях растворов, при которых проводили измерения. Мы видели, что оба метода дают возможность фактически оценивать число молекул в растворе. Для раствора данной концентрации, выраженной в виде массы растворенного вещества в единице объема, число молекул обратно пропорционально молекулярному весу. В соответствии с этим для полимера молекулярного веса, например, 500 000 понижение точки замерзания составит одну тысячную того эффекта, который дает вещество с молекулярным весом 500 при той же весовой концентрации. Отсюда следует, что при измерении вели- [c.33]


    Измеренное осмотическое давление Р часто не совпадает с теми Ре, которые вычисляются по этой формуле из заданных концентраций с. Нарушение закона Вант-Г оффа сам автор его выразил в виде поправочного коэфициента i (изотонический коэфициент), большего чем единица  [c.291]

    Коэффициент активности существенно определяет термодинамические свойства растворов электролита. Его можно рассматривать как меру приближения ионов в данном растворе к поведению их в идеальном растворе. В сильно разбавленных растворах электролита, когда межионное взаимодействие становится весьма малым, активность растворов будет равной его концентрации и коэффициент активности достигнет единицы. Растворы при бесконечном разбавлении приближаются к идеальным и обычно при -нимаются в качестве стандартного состояния сильного электролита. Наблюдаемое уменьшение и последующий рост коэффициента активности с повышением концентрации электролита отражают суммарное влияние на термодинамические свойства раствора эффектов взаимного притяжения и гидратации ионов, неполную диссоциацию молекул, образование комплексов и др. Коэффициенты активности экспериментально определяются по измерениям осмотического давления, понижения температуры замерзания, упругости пара, электродвижущей силы и др. [c.143]

    Так как с,/Л/,. — это число молей /-х растворенных молекул в единице объема, ясно, что М — это среднечисленная молекулярная масса (М ) именно эта величина получается при измерении осмотического давления в растворе, содержащем смесь разных типов макромолекул. Если вспомнить, что осмотическое давление зависит от числа растворенных частиц, этот результат не вызовет удивления. [c.450]

    В результате измерений осмотического давления было установлено [276], что средний молекулярный вес образующегося полимера соответствует 176 единицам мономера на одну молекулу полимера. [c.448]

    Поскольку линейные размеры коллоидных частиц обычно на 2—3 порядка больше линейных размеров молекул, то при одинаковых весовых концентрациях количество частиц в единице объема коллоидных растворов будет на 6—9 порядков меньше, чем в истинных растворах соответственно во столько же раз будет меньше осмотическое давление. Поэтому определение осмотического давления и зависящих от него эффектов — понижения температуры кристаллизации ЛТзатв и повышения температуры кипения АГкип — связано со значительными экспериментальными трудностями. Достаточно сказать, что осмотическое давление золя золота при концентрации 1 мг/л, Т = 273 К и линейной величине частиц 25 нм равно 3,63 10""Н/м . Определение столь малых величин осмотического давления и изменения температур кристаллизации и кипения осложняется и тем, что уже небольшое количество примесей электролитов будет вносить существенные ошибки при измерении. [c.405]

    Отсюда молекулярный вес растворенного вещества можно рассчитать, если имеется удобный метод для измерения изменений активности растворителя в диапазоне концентраций, в котором приложим закон Рауля. К числу методов, которые могут быть использованы для этой цели, принадлежат методы измерения давления пара, понижения температуры замерзания (криоскопия), повышения температуры кипения (эбулиоскония) и изменения осмотического давления. Для предельного случая чрезвычайно сильно разбавленных растворов все они дают результаты, зависящие лишь от числа частиц растворенного вещества в единице объема, и обычно характеризуются коллигативными свойствами растворов. Если в растворе содержатся молекулы различного молекулярного веса, то определение числа молекул растворенного вещества при известной концентрации соответствует среднечисловому молекулярному весу Мп растворенного вещества. [c.141]

    Из многочисленных других методов, основанных на измерении давления пара над раствором, содержащим нелетучие растворенные вещества [19, 35], по-видимому, только один применялся для изучения равновесия. В принципе, это психрометрический метод [11, 21. Каплю растворителя и каплю раствора помещают в сосуд, содержащий пар растворителя при давлении насыщения ро. Так как ро>р, то пар будет конденсироваться на капле раствора, вызывая повышение температуры, но на капле растворителя не будет происходить конденсации. Таким образом, две капли будут отличаться по температуре на величину ЛТ, которая пропорциональна разности давлений их паров. Величину АТ удобно определить с помощью термопары или пары термисторов, константу пропорциональности можно найти с помощью раствора, в котором поведение растворенного вещества известно. При изучении полимеризации амидов в бензоле Дэвис и Томас [11] использовали дифенил в качестве стандарта и предполагали, что все осмотические коэффициенты равны единице. Используя растворы с известной концентрацией дифенила, они откалибровали прибор так, что искомую величину 5i можно было получить прямо по разности сопротивлений термисторов (ср. гл. 16). [c.319]

    Следовательно, степень диссоциации а представляет собой отношение измеренного повышения осмотического давления к такому, которое получилось бы при полной диссоциации. С возрастанием разбавления а растет и приближается к единице, т. е. к полной диссоциации. [c.188]


    Поскольку размеры коллоидных частиц во много раз больше размеров молекул, то при одной и той же массе содержащегося в растворе вещества число частиц в единице объема коллоидного раствора в десятки и сотни тысяч раз меньше, чем число молекул в единице объема истинного раствора. По этой причине величина осмотического давления в коллоидных растворах ничтожно мала и с трудом поддается измерению. Результаты опытного определения осмотического давления коллоидных растворов часто сильно искажаются вследствие присутствия в них даже ничтожных примесей (следов) электролитов и растворимых низкомолекуляриых веществ. Получить же устойчивые золи без таких примесей не представляется возможным. Поэтому метод осмометрии для исследования коллоидных растворов применяется редко. Однако он с успехом применяется для растворов ВМС. [c.341]

    Степень диссоциации, по Аррениусу, не может быть больше единицы и меньше нуля и не должна зависеть от метода ее определения. Однако опыты показали, что для многих электролитов при увеличении их концентрации степень диссоциации, найденная из данных измерения электропроводности, существенно отличается от ее значения при определении другими методами измерением электродвижущих сил, определением понижения температуры замерзания, осмотического давления растворов и т. д. Разница превышает возможные ошибки опыта, увеличивается по мере возрастания концентрации, а в области высоких концентраций степень диссоциации становится больше единицы. Такое значение степени диссоциации не может иметь того физического смысла, который следует из теории Аррениуса. Вычисляемые по теории Аррениуса константы диссоциации сильных электролитов резко изменяются с концентрацией, т.е. не являются константами. Вопреки предположениям Аррениуса о существовании в растворах равновесия между диссоциированными и недиссоциированными молекулами, даже в концентрированных растворах солей современными спектральными методами комбинационного рассеяния не удалось обнаружить линий и полос, которые можно было бы приписать недиссоциированным молекулам. [c.138]

    Кристаллические соли и щелочи имеют ионную структурную решетку. Поскольку нет в кристаллах отдельных молекул, то нет диссоциации как таковой в растворах. Ионы кристаллической решетки при растворении лишь приобретают подвижность. Поэтому считают, что сильные электролиты в любых концентрациях полностью диссоциированы. Степень их диссоциации всегда должна быть равна единице. При вычислении степени диссоциации по осмотическому давлению раствора или путем измерения электропроводности она получается меньше единицы. Это зависит от взаимного влияния разноименных ионов друг на друга. Каждый ион обладает сильным электрическим полем, которое действует на соседние ионы противоположного знака, притягивая их. Вокруг каждого иона создается как бы облако из ионов противоположного знака. В силь- [c.186]

    Т аким образом, коэффициент или фактор Вант-Гоффа г есть отношен 1ие осмотического давления, практически найденного, к осмотическому давлению, теоретически вычисленному на основании молекулярной концентрации раствора. У неэлектролитов осмотическое давление, практически найденное, не расходится с величиной давления, высчитанного на основания молекулярной концентравди, а поэтому для них /=1. Для электролитов, у которых всегда измерение осмотического давления дает более высокие величины, чем это следовало ожидать на основании теоретических подсчетов, фактор Вант-Гоффа всегда больший единицы  [c.121]

    Во всех этих уравнениях и — число молей частиц I (с молекулярным весом Л/ ) в единице объема. Весовая концентрация в граммах на единицу объема равна С = игМг. Наиболее демократичной мерой среднего молекулярного веса является величина Мп, поскольку каждая молекула учитывается в этом случав только один раз, независимо от ее веса. При вычислении величин Му, ш более тяжелые молекулы вносят больший вклад, иначе говоря, учитываются с большим статистическим весом (особенно сильно это сказывается на величине МСреднечисленный молекулярный вес определяют исходя из данных по осмотическому давлению или на основании результатов анализа концевых групп, а также с помощью рентгеноструктурных и электронно-микроскопических измерений. Для определения средневесового мо.декулярного веса используют данные по светорассеянию, по дисперсии диэлектрической постоянной, по деполяризации флуоресценции и, наконец, но седиментации. Методом измерения вязкости получают среднюю величину молекулярного веса, хотя и достаточно близкую, но все же пе равную Л/и,. [c.141]

    Первое экспериментальное подтверждение больших размеров молекулы целлюлозы было получено Дюкло и Вольманом [651, которые определяли молекулярный вес нитроцеллюлозы, измеряя осмотическое давление. Вскоре после появления их второго сообщения были опубликованы исследования, посвященные измерению скорости диффузии медноаммиачного раствора целлюлозы (Герцог и Крюгер [66]), определению молекулярного веса целлюлозы в медноаммиачном растворе методом ультрацентрифуги (Штамм [67]), определению вязкости растворов целлюлозы и ее производных (Штаудингер и др. [68, 69]) и определению молекулярного веса по содержанию концевых групп в метилированной целлюлозе (Хэуорс и Махемер [701). Хотя данные, полученные путем этих исследований, совпадают неполностью, они окончательно подтверждают, что целлюлоза диспергирована в растворе в виде крупных структурных единиц, которые, как показывают более поздние исследования, можно с полным правом считать молекулами. [c.204]

    Наиболее важными являются два средних значения — средне численный и средневесовой. В принципе они определяются следующим путем. Когда показание измерительного прибора пропорционально числу частиц, то определяют среднечисленный молекулярный вес. Когда оно пропорционально весу вещества, тогда получают средневесовое значение. Так, эквимолярные растворы мономера и его димера будут обладать равным осмотическим давлением, но раствор димера будет иметь примерно вдвое большее поглощение света и вдвое больший показатель преломления, чем раствор мономера. Таким образом, молекулярный вес, определенный по осмотическому давлению, будет среднечисленным, но большинство физических методов зависит от измерения двух последних физических свойств. При этих обстоятельствах количество материала, отнесенного к -му компоненту, зависит не от числа присутствующих молекул, а от массы материала этого вида. На практике 5о является средневесовым, так же как и Од, в тех случаях, когда инкремент показателя преломления на единицу веса остается одним и тем же для всех видов молекул. Однако молекулярный вес зависит от отношения За/Од. Когда это отношение определяется непосредственно, как в методе Арчибальда, никаких сомнений не возникает но когда средневесовые во и Од определяются раздельно, полученное отношение не обязательно является подлинно средневесовым. Если распределение молекулярных весов не очень широкое, это вряд ли приведет к серьезным ошибкам. Вычисленное значение молекулярного веса зависит также от парциального удельного объема предполагается, что он также постоянен для всего полидисперсного набора молекул. Фактически он может немного изменяться, особенно для заряженных молекул (стр. 70, 71) это опять-таки не вызовет серьезных ошибок, за исключением метода седиментации в градиенте плотности. [c.43]


Смотреть страницы где упоминается термин Давление единица измерения осмотическое: [c.440]    [c.538]    [c.154]    [c.98]    [c.154]    [c.408]    [c.222]    [c.389]   
Химия (1978) -- [ c.267 ]




ПОИСК





Смотрите так же термины и статьи:

Давление единицы

Давление единицы измерения

Давление измерение

Единицы измерения

Осмотическое давление

Осмотическое давление измерения

Осмотическое измерение

Фаг осмотический шок



© 2025 chem21.info Реклама на сайте